CONGRUENCES WITH A COMMON MIDDLE ENVELOPE*

BY MALCOLM FOSTER

1. Introduction. Let C and \bar{C} be two rectilinear congruences whose corresponding rays l and \bar{l} are parallel; and let M be the point on the unit sphere S at which the normal is parallel to l and \bar{l}. We refer the sphere to any isothermal system and take the linear element in the form $d s^{2}=e^{2 \lambda}\left(d u^{2}+d v^{2}\right) . \dagger$ Relative to the moving trihedral at M, whose x axis is chosen tangent to the curve $v=$ const., the coordinates of the points in which l and \bar{l} pierce the $x y$ plane will be denoted by (a, b) and (\bar{a}, \bar{b}), respectively. Distances on l and \bar{l} will be measured from these points, and the positive direction will be that which corresponds to the outward-drawn normal at M.

It is the purpose of this note to consider such pairs of congruences as C and \bar{C} when they have a common middle envelope, that is, when the distances to the middle points on l and \bar{l} are equal.
2. Condition that C and \bar{C} have a Common Middle Envelope. A necessary and sufficient condition that C and \bar{C} have a common middle envelope is that \ddagger

$$
\frac{\frac{\partial a}{\partial u}+\frac{\partial b}{\partial v}+a r_{1}-b r+2 \xi}{p_{1}}=\frac{\frac{\partial \bar{a}}{\partial u}+\frac{\partial \bar{b}}{\partial v}+\bar{a} r_{1}-\bar{b} r+2 \xi}{p_{1}}
$$

This may be written

$$
\frac{\partial}{\partial u}(a-\bar{a})+\frac{\partial}{\partial v}(b-\bar{b})+(a-\bar{a}) \frac{\partial \lambda}{\partial u}+(b-\bar{b}) \frac{\partial \lambda}{\partial v}=0
$$

which, upon multiplication by e^{λ}, becomes

$$
\frac{\partial}{\partial u}\left[e^{\lambda}(a-\bar{a})\right]=-\frac{\partial}{\partial v}\left[e^{\lambda}(b-\bar{b})\right] ;
$$

[^0]hence
\[

$$
\begin{equation*}
a-\bar{a}=e^{-\lambda} \frac{\partial R}{\partial v}, \quad b-\bar{b}=-e^{-\lambda} \frac{\partial R}{\partial u} \tag{1}
\end{equation*}
$$

\]

where R is an arbitrary function of u and v. From (1) we have the following theorem.*

Theorem 1. A necessary and sufficient condition that the congruences C and \bar{C} have a common middle envelope is that the congruence defined by the point $(a-\bar{a}, b-\bar{b})$ has for its middle envelope a point, namely, the center of S.
3. Rotated Congruences. Let C be the congruence defined by (a, b); and let this point be rotated through an angle $\pi / 2$ about the corresponding normal to the point $(-b, a) . \dagger$ If \bar{C} be the congruence defined by the point $(-b, a)$, we say C and \bar{C} constitute a pair of rotated congruences. We wish to determine those congruences $C(a, b)$, which with $\bar{C}(-b, a)$, have a common middle envelope. From (1) we must have

$$
a+b=e^{-\lambda} \frac{\partial R}{\partial v}, \quad b-a=-e^{-\lambda} \frac{\partial R}{\partial u}
$$

The solution of these simultaneous equations will obviously give us the required condition:

$$
\begin{equation*}
a=\frac{e^{-\lambda}}{2}\left(\frac{\partial R}{\partial v}+\frac{\partial R}{\partial u}\right), \quad b=\frac{e^{-\lambda}}{2}\left(\frac{\partial R}{\partial v}-\frac{\partial R}{\partial u}\right) . \tag{2}
\end{equation*}
$$

We therefore have the following result.
Theorem 2. A necessary and sufficient condition that a congruence $C(a, b)$ and its rotated congruence \bar{C} have a common middle envelope is that a and b have the values given in (2).

Suppose now that $C(a, b)$ has for its middle envelope the center of S. Then $a=e^{-\lambda}(\partial R / \partial v), b=-e^{-\lambda}(\partial R / \partial u)$. If $C(a, b)$ be rotated to $\bar{C}(-b, a)$, we know that \bar{C} is a normal congruence. \ddagger

[^1]Let us now consider the middle point of the line joining (a, b) and $(-b, a)$; its coordinates are $[(a-b) / 2,(a+b) / 2]$, or

$$
\begin{equation*}
\left[\frac{e^{-\lambda}}{2}\left(\frac{\partial R}{\partial v}+\frac{\partial R}{\partial u}\right), \frac{e^{-\lambda}}{2}\left(\frac{\partial R}{\partial v}-\frac{\partial R}{\partial u}\right)\right] . \tag{3}
\end{equation*}
$$

Since (3) is identical with (2), we have the following theorem.
Theorem 3. Given a square $A B C D$, central with M, which lies in the xy plane of the trihedral. If the point A defines a congruence whose middle envelope is the center of S, so also does C, the opposite vertex, while the opposite vertices B and D define normal congruences; and the four points which bisect the sides of the square define four congruences with a common middle envelope.
4. C and \bar{C} Each Normal. Let C and \bar{C} be normal congruences. Then*

$$
\begin{equation*}
a=e^{-\lambda} \frac{\partial P}{\partial u}, \quad \bar{a}=e^{-\lambda} \frac{\partial \bar{P}}{\partial u}, \quad b=e^{-\lambda} \frac{\partial P}{\partial v}, \quad \bar{b}=e^{-\lambda} \frac{\partial \bar{P}}{\partial v} . \tag{4}
\end{equation*}
$$

By (1) and (4), a necessary and sufficient condition that the congruences C and \bar{C} have a common middle envelope is that

$$
\begin{align*}
& a-\bar{a}=e^{-\lambda}\left(\frac{\partial P}{\partial u}-\frac{\partial \bar{P}}{\partial u}\right)=e^{-\lambda} \frac{\partial R}{\partial v} \\
& b-\bar{b}=e^{-\lambda}\left(\frac{\partial P}{\partial v}-\frac{\partial \bar{P}}{\partial v}\right)=-e^{-\lambda} \frac{\partial R}{\partial u} \tag{5}
\end{align*}
$$

From (5), we have, from $\partial^{2} R / \partial u \partial v=\partial^{2} R / \partial v \partial u$, which is the condition of integrability,

$$
\frac{\partial^{2}}{\partial u^{2}}(P-\bar{P})+\frac{\partial^{2}}{\partial v^{2}}(P-\bar{P})=0
$$

We have therefore the following theorem.
Theorem 4. A necessary and sufficient condition that the normal congruences (4) have a common middle envelope is that $(P-\bar{P})$ be a solution of Laplace's equation.

Wesleyan University

[^2]
[^0]: * Presented to the Society, February 23, 1935.
 \dagger Malcolm Foster, Rectilinear congruences referred to special surfaces, Annals of Mathematics, (2), vol. 25 (1923), pp. 159-180.
 \ddagger Foster, loc. cit., p. 163, equation (17).

[^1]: * Foster, loc. cit., p. 173.
 \dagger The direction of rotation is immaterial.
 \ddagger Foster, loc. cit., p. 166, Theorem 1.

[^2]: * Foster, loc. cit., p. 173.

