[February,

CONGRUENCES WITH A COMMON MIDDLE ENVELOPE*

BY MALCOLM FOSTER

1. Introduction. Let C and \overline{C} be two rectilinear congruences whose corresponding rays l and \overline{l} are parallel; and let M be the point on the unit sphere S at which the normal is parallel to land \overline{l} . We refer the sphere to any isothermal system and take the linear element in the form $ds^2 = e^{2\lambda}(du^2 + dv^2)$.[†] Relative to the moving trihedral at M, whose x axis is chosen tangent to the curve v = const., the coordinates of the points in which l and \overline{l} pierce the xy plane will be denoted by (a, b) and $(\overline{a}, \overline{b})$, respectively. Distances on l and \overline{l} will be measured from these points, and the positive direction will be that which corresponds to the outward-drawn normal at M.

It is the purpose of this note to consider such pairs of congruences as C and \overline{C} when they have a common middle envelope, that is, when the distances to the middle points on l and \overline{l} are equal.

2. Condition that C and \overline{C} have a Common Middle Envelope. A necessary and sufficient condition that C and \overline{C} have a common middle envelope is that[‡]

$$\frac{\frac{\partial a}{\partial u} + \frac{\partial b}{\partial v} + ar_1 - br + 2\xi}{p_1} = \frac{\frac{\partial \bar{a}}{\partial u} + \frac{\partial \bar{b}}{\partial v} + \bar{a}r_1 - \bar{b}r + 2\xi}{p_1}$$

This may be written

$$\frac{\partial}{\partial u}(a-\bar{a}) + \frac{\partial}{\partial v}(b-\bar{b}) + (a-\bar{a})\frac{\partial \lambda}{\partial u} + (b-\bar{b})\frac{\partial \lambda}{\partial v} = 0,$$

which, upon multiplication by e^{λ} , becomes

$$\frac{\partial}{\partial u} \left[e^{\lambda} (a - \bar{a}) \right] = - \frac{\partial}{\partial v} \left[e^{\lambda} (b - \bar{b}) \right];$$

^{*} Presented to the Society, February 23, 1935.

[†] Malcolm Foster, Rectilinear congruences referred to special surfaces, Annals of Mathematics, (2), vol. 25 (1923), pp. 159-180.

[‡] Foster, loc. cit., p. 163, equation (17).

1936.]

hence

(1)
$$a - \bar{a} = e^{-\lambda} \frac{\partial R}{\partial v}, \qquad b - \bar{b} = -e^{-\lambda} \frac{\partial R}{\partial u},$$

where R is an arbitrary function of u and v. From (1) we have the following theorem.*

THEOREM 1. A necessary and sufficient condition that the congruences C and \overline{C} have a common middle envelope is that the congruence defined by the point $(a - \overline{a}, b - \overline{b})$ has for its middle envelope a point, namely, the center of S.

3. Rotated Congruences. Let C be the congruence defined by (a, b); and let this point be rotated through an angle $\pi/2$ about the corresponding normal to the point (-b, a). If \overline{C} be the congruence defined by the point (-b, a), we say C and \overline{C} constitute a pair of rotated congruences. We wish to determine those congruences C(a, b), which with $\overline{C}(-b, a)$, have a common middle envelope. From (1) we must have

$$a + b = e^{-\lambda} \frac{\partial R}{\partial v}, \qquad b - a = -e^{-\lambda} \frac{\partial R}{\partial u}.$$

The solution of these simultaneous equations will obviously give us the required condition:

(2)
$$a = \frac{e^{-\lambda}}{2} \left(\frac{\partial R}{\partial v} + \frac{\partial R}{\partial u} \right), \qquad b = \frac{e^{-\lambda}}{2} \left(\frac{\partial R}{\partial v} - \frac{\partial R}{\partial u} \right).$$

We therefore have the following result.

THEOREM 2. A necessary and sufficient condition that a congruence C(a, b) and its rotated congruence \overline{C} have a common middle envelope is that a and b have the values given in (2).

Suppose now that C(a, b) has for its middle envelope the center of S. Then $a = e^{-\lambda}(\partial R/\partial v)$, $b = -e^{-\lambda}(\partial R/\partial u)$. If C(a, b) be rotated to $\overline{C}(-b, a)$, we know that \overline{C} is a normal congruence.[‡]

^{*} Foster, loc. cit., p. 173.

[†] The direction of rotation is immaterial.

[‡] Foster, loc. cit., p. 166, Theorem 1.

Let us now consider the middle point of the line joining (a, b) and (-b, a); its coordinates are [(a-b)/2, (a+b)/2], or

(3)
$$\left[\frac{e^{-\lambda}}{2}\left(\frac{\partial R}{\partial v}+\frac{\partial R}{\partial u}\right), \frac{e^{-\lambda}}{2}\left(\frac{\partial R}{\partial v}-\frac{\partial R}{\partial u}\right)\right].$$

Since (3) is identical with (2), we have the following theorem.

THEOREM 3. Given a square ABCD, central with M, which lies in the xy plane of the trihedral. If the point A defines a congruence whose middle envelope is the center of S, so also does C, the opposite vertex, while the opposite vertices B and D define normal congruences; and the four points which bisect the sides of the square define four congruences with a common middle envelope.

4. C and \overline{C} Each Normal. Let C and \overline{C} be normal congruences. Then*

(4)
$$a = e^{-\lambda} \frac{\partial P}{\partial u}$$
, $\bar{a} = e^{-\lambda} \frac{\partial \overline{P}}{\partial u}$, $b = e^{-\lambda} \frac{\partial P}{\partial v}$, $\bar{b} = e^{-\lambda} \frac{\partial \overline{P}}{\partial v}$.

By (1) and (4), a necessary and sufficient condition that the congruences C and \overline{C} have a common middle envelope is that

(5)
$$a - \bar{a} = e^{-\lambda} \left(\frac{\partial P}{\partial u} - \frac{\partial \overline{P}}{\partial u} \right) = e^{-\lambda} \frac{\partial R}{\partial v},$$
$$b - \bar{b} = e^{-\lambda} \left(\frac{\partial P}{\partial v} - \frac{\partial \overline{P}}{\partial v} \right) = - e^{-\lambda} \frac{\partial R}{\partial u}.$$

From (5), we have, from $\partial^2 R / \partial u \partial v = \partial^2 R / \partial v \partial u$, which is the condition of integrability,

$$\frac{\partial^2}{\partial u^2} \left(P - \overline{P} \right) + \frac{\partial^2}{\partial v^2} \left(P - \overline{P} \right) = 0.$$

We have therefore the following theorem.

THEOREM 4. A necessary and sufficient condition that the normal congruences (4) have a common middle envelope is that $(P - \overline{P})$ be a solution of Laplace's equation.

Wesleyan University

^{*} Foster, loc. cit., p. 173.