of a homeomorphism in the sense of Antoine.* From Theorem 2 , p. 394, of the paper just cited, we can obtain a theorem for A-extending a homeomorphism between two subsets of spheres.

University of Buffalo

A PROPERTY OF THE SOLUTIONS OF $t^{2}-d u^{2}=4$ BY GORDON PALL

Let p be any odd prime not dividing d. The integral solutions $t_{i}, u_{i}, \quad(i=0, \pm 1, \cdots), \dagger$ of $t^{2}-d u^{2}=4$ have the following property.

Theorem. Let $m+n=r+s$. Let v stand for t or u. Then $v_{m}+v_{n} \equiv v_{r}+v_{s}(\bmod p)$ if and only if the terms are congruent in pairs; \ddagger the same holds for each of

$$
v_{m}-v_{n} \equiv v_{r}-v_{s}, \quad v_{m}+v_{n} \equiv-\left(v_{r}+v_{s}\right), \quad v_{m}-v_{n} \equiv-\left(v_{r}-v_{s}\right)
$$

For if $m+n$ is even and $v=u$, we can write $m=h+i, n=h-i$, $r=h+j, s=h-j$, whence

$$
u_{m}+u_{n}=u_{h} t_{i}, \quad u_{r}+u_{s}=u_{h} t_{j}
$$

if $u_{h}=0$, then $u_{m} \equiv-u_{n}$; if $t_{i} \equiv t_{j}$, known conditions for two u 's or t 's to be congruent show that $u_{m}=u_{r}$ or u_{s}. The remaining cases are similar. If $m+n$ is odd, we transpose terms, and find with a little attention to parities ($u_{i}=-u_{-i}, t_{i}=t_{-i}$) one or other of the former cases.

McGill University

[^0]
[^0]: * H. M. Gehman, On extending a correspondence in the sense of Antoine, American Journal of Mathematics, vol. 51 (1929), pp. 385-396.
 \dagger For notations see, for example, Pall, Transactions of this Society, vol. 35 (1933), p. 501.
 \ddagger That is, $v_{m} \equiv-v_{n}, v_{r}$, or v_{s}.

