of a homeomorphism in the sense of Antoine.* From Theorem 2, p. 394, of the paper just cited, we can obtain a theorem for A-extending a homeomorphism between two subsets of spheres.

UNIVERSITY OF BUFFALO

A PROPERTY OF THE SOLUTIONS OF $t^2 - du^2 = 4$

BY GORDON PALL

Let p be any odd prime not dividing d. The integral solutions t_i , u_i , $(i=0,\pm 1, \cdots)$, \dagger of $t^2-du^2=4$ have the following property.

THEOREM. Let m+n=r+s. Let v stand for t or u. Then $v_m+v_n\equiv v_r+v_s \pmod{p}$ if and only if the terms are congruent in pairs; the same holds for each of

$$v_m - v_n \equiv v_r - v_s, \quad v_m + v_n \equiv -(v_r + v_s), \quad v_m - v_n \equiv -(v_r - v_s).$$

For if m+n is even and v = u, we can write m = h+i, n = h-i, r = h+j, s = h-j, whence

$$u_m + u_n = u_h t_i, \quad u_r + u_s = u_h t_j;$$

if $u_h = 0$, then $u_m \equiv -u_n$; if $t_i \equiv t_j$, known conditions for two *u*'s or *t*'s to be congruent show that $u_m = u_r$ or u_s . The remaining cases are similar. If m+n is odd, we transpose terms, and find with a little attention to parities $(u_i = -u_{-i}, t_i = t_{-i})$ one or other of the former cases.

McGill University

1936.]

^{*} H. M. Gehman, On extending a correspondence in the sense of Antoine, American Journal of Mathematics, vol. 51 (1929), pp. 385-396.

[†] For notations see, for example, Pall, Transactions of this Society, vol. 35 (1933), p. 501.

 $[\]ddagger$ That is, $v_m \equiv -v_n$, v_r , or v_s .