Hurwitz' definition of commutative group employs two postulates;* the reader will find it interesting to compare with that of the present paper.

University of California at Los Angeles

ON SOME QUADRATURE FORMULAS AND ON ALLIED THEOREMS ON TRIGONOMETRIC POLYNOMIALS

BY J. GERONIMUS

1. Introduction. We consider the following problem.

Find 2n numbers $0 \leq \theta_1 < \theta_2 < \cdots < \theta_{2n-1} < \theta_{2n} < 2\pi$ such that for every trigonometric polynomial

(1)
$$G(\theta) = \alpha_n + \sum_{k=0}^{n-1} \{ \alpha_k \cos (n-k)\theta + \beta_k \sin (n-k)\theta \}$$

of order $\leq n$ the equality

(2)
$$\int_{0}^{2\pi} F(\theta) G(\theta) d\theta = L \left\{ \sum_{i=1}^{n} G(\theta_{2i-1}) - \sum_{i=1}^{n} G(\theta_{2i}) \right\}$$

holds true, where $F(\theta)$ is the given function

(3)
$$F(\theta) = \sum_{k=n-s}^{\infty} (A_k \cos k\theta + B_k \sin k\theta), \quad (s \le (n-1)/2),$$

and L is a given positive number.

Let

(4)

$$F_{n}(\theta) = \sum_{k=n-s}^{n} \{A_{k} \cos k\theta + B_{k} \sin k\theta\},$$

$$p_{n}(\theta) = -\int F_{n}(\theta)d\theta, \quad G^{*}(\theta) = \text{const.} \prod_{k=1}^{2n} \sin \frac{\theta - \theta_{k}}{2}.$$

Then, integrating (2), we get

^{*} For references, see the first footnote to this paper.

J. GERONIMUS

 $\int_{0}^{2\pi} \left\{ p_n(\theta) - \frac{L}{2} \operatorname{sgn} G^*(\theta) \right\} G'(\theta) d\theta = 0,$

whence it follows that

(5)
$$\frac{L}{2}\operatorname{sgn} G^*(\theta) = \frac{c}{2} + p_n(\theta) + \sum_{k=n+1}^{\infty} (M_k \cos k\theta + N_k \sin k\theta),$$

where c is an arbitrary constant; it is clear that

$$(6) |c| \leq L.$$

By the theorem of N. Achyeser and M. Krein[†] a necessary and sufficient condition for the existence of a function deviating from zero by not more than L/2 and having the first members of the Fourier expansion

$$\frac{c}{2} + \Re \sum_{k=1}^{n} \bar{c}_k z^k, \quad c_k = a_k + i b_k, \qquad (k = 1, 2, \cdots, n; z = e^{i\theta}),$$

is that the form

(7)
$$\sum_{r=0}^{n} \sum_{k=0}^{n} \gamma_{r-k} x_r \bar{x}_k$$

be non-negative, where the γ 's are to be found as the coefficients of the expansion

(8)
$$e^{(\pi i c)/(2L)} \cdot e^{(\pi i/L)S} = \gamma + \gamma_1 z + \cdots + \gamma_n z^n + \cdots,$$

where

$$S=\sum_{k=1}^n \bar{c}_k z^k,$$

and where $\gamma_0 = \gamma + \bar{\gamma}, \ \gamma_{-k} = \bar{\gamma}_k, \ (k = 1, 2, \cdots, n).$

It is clear that in our case we have

(9)

$$c_{n-k} = \frac{B_{n-k} - iA_{n-k}}{n-k}, \qquad \gamma_{n-k} = \frac{\pi i}{L} e^{(\pi ic)/(2L)} \bar{c}_{n-k}, \\ (k = 0, 1, \dots, s), \\ \gamma_0 = 2 \cos \frac{\pi c}{2L}, \qquad \gamma_1 = \gamma_2 = \dots = \gamma_{n-s-1} = 0.$$

† N. Achyeser and M. Krein, Über Fouriersche Reihen beschränkter summierbarer Funktionen und ein neuer Extremumproblem (1 Teil), Transactions of the Kharkow Mathematical Society, vol. 9 (1934), pp. 18-19.

130

[February,

Setting

(10)
$$ie^{(\pi ic)/(2L)}x_{n-k} = y_{n-k}, \quad x_k = y_k, \quad (k = 0, 1, \dots, s),$$

we may write our condition thus:

 $2L \pi c$

(11)
$$\frac{2L}{\pi}\cos\frac{\pi t}{2L} + A \ge 0,$$

where we have put

(12)
$$A = \frac{\sum_{r,k} c_{r-k} y_k \bar{y}_r}{\sum_{k=0}^n |y_k|^2}, \qquad (n-s \le |r-k| \le n).$$

It is easy to find that A satisfies the inequality

$$-\delta_0 \leq A \leq \delta_0,$$

where δ_0 is the greatest root of the equation

(13)
$$\begin{vmatrix} \delta & 0 & \cdots & 0 & c_{n-s} & c_{n-s+1} & \cdots & c_n \\ 0 & \delta & \cdots & 0 & 0 & c_{n-s} & \cdots & c_{n-1} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & \delta & 0 & 0 & \cdots & c_{n-s} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \bar{c}_{n-s} & 0 & \cdots & 0 & \delta & 0 & \cdots & 0 \\ \bar{c}_{n-s+1} & \bar{c}_{n-s} & \cdots & 0 & 0 & \delta & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \bar{c}_n & \bar{c}_{n-1} & \cdots & \bar{c}_{n-s} & 0 & 0 & \cdots & \delta \end{vmatrix} = 0.$$

Therefore our form (7) will be non-negative if and only if

(14)
$$\cos \frac{\pi c}{2L} = \frac{\pi \delta_0}{2L}, \qquad L \geqq \frac{\pi \delta_0}{2}.$$

Such are the necessary conditions for the existence of the quadrature formula (2); it is not difficult to see that they are sufficient too.

2. Roots of Trigonometric Polynomials. Thus we are to find the polynomial $G^*(\theta)$ of order $\leq n$ from the condition

J. GERONIMUS

[February,

$$\operatorname{sgn} G^{*}(\theta) = \frac{c}{L} + \frac{2}{L} \operatorname{R} \sum_{k=0}^{s} \bar{c}_{n-k} z^{n-k} + \operatorname{R} \sum_{k=n+1}^{\infty} \mu_{k} z^{k}, \qquad (z = e^{i\theta}).$$

Consider the polynomial

(15) $P(\theta, \alpha) = \mathcal{R}[q^2(z)z^{n-2s+\nu}] + |q(z)|^2 \cos \alpha, \qquad (z = e^{i\theta}),$

where $\nu + 1$ is the multiplicity of δ_0 and the polynomial q(z) of degree $s - \nu$ is to be found from the condition

(16)
$$\delta_0 \frac{q(z)}{z^{s-\nu}\bar{q}(1/z)} = \bar{c}_{n-s} + \bar{c}_{n-s+1}z + \cdots + \bar{c}_n z^s + \cdots,$$

 $(|z| \leq 1).$

We have

$$\operatorname{sgn} P(\theta, \alpha) = \operatorname{sgn} \left\{ \cos \frac{(n-2s+\nu)\theta+2\vartheta+\alpha}{2} \cos \frac{(n-2s+\nu)\theta+2\vartheta-\alpha}{2} \right\},\,$$

where $\vartheta = \arg q(z)$, whence we find

$$\operatorname{sgn} P(\theta, \alpha) = \operatorname{sgn} \left\{ e^{-i\alpha} \frac{1 + z^{n-s} e^{i\alpha}}{1 + z^{n-s} e^{-i\alpha}} \frac{q(z)}{z^{s-\nu} \bar{q}(1/z)}}{1 + z^{n-s} e^{-i\alpha}} \frac{q(z)}{z^{s-\nu} \bar{q}(1/z)}} \right\}$$

$$(17) \qquad = \Re \left\{ 1 - \frac{2\alpha}{\pi} + \frac{2}{\pi i} \log \frac{1 + z^{n-s} e^{i\alpha}}{1 + z^{n-s} e^{-i\alpha}} \frac{q(z)}{z^{s-\nu} \bar{q}(1/z)}}{1 + z^{n-s} e^{-i\alpha}} \frac{q(z)}{z^{s-\nu} \bar{q}(1/z)}} \right\}$$

$$= 1 - \frac{2\alpha}{\pi} + \frac{4 \sin \alpha}{\pi \delta_0} \Re \sum_{k=0}^{s} \bar{c}_{n-k} z^{n-k} + \Re \sum_{k=n+1}^{\infty} \lambda_k z^k.$$

On putting

(18)
$$1 - \frac{2\alpha}{\pi} = \frac{c}{L}, \qquad (0 \le \alpha \le \pi),$$

we see that

$$\operatorname{sgn} G^*(\theta) - \operatorname{sgn} P(\theta, \alpha) = \sum_{k=n+1}^{\infty} (M_k \cos k\theta + N_k \sin k\theta).$$

132

Hence it follows that almost everywhere in the interval $(0, 2\pi)$

$$\operatorname{sgn} G^*(\theta) = \operatorname{sgn} P(\theta, \alpha),$$

for we have

$$\int_0^{2\pi} \left[\operatorname{sgn} G^*(\theta) - \operatorname{sgn} P(\theta, \alpha) \right] G^*(\theta) d\theta = 0,$$

and the integrand is non-negative. Hence we have the following theorem.

THEOREM 1. Being given the function

$$F(\theta) = \sum_{k=n-s}^{\infty} \{A_k \cos k\theta + B_k \sin k\theta\}, \qquad (s \le (n-1)/2),$$

and the positive number L, we can find $2m \leq 2n$ real numbers $0 \leq \theta_1 < \theta_2 < \cdots < \theta_{2m} < 2\pi$ such that the quadrature formula

$$\int_{0}^{2\pi} F(\theta)G(\theta)d\theta = L\left\{\sum_{i=1}^{m} G(\theta_{2i-1}) - \sum_{i=1}^{m} G(\theta_{2i})\right\}$$

holds true for every trigonometric polynomial $G(\theta)$ of order $\leq n$; L must satisfy the inequality $L \geq \pi \delta_0/2$, where δ_0 is the greatest root of (13); $c_{n-k} = (B_{n-k} - iA_{n-k})/(n-k)$, $(k=0, 1, \dots, s)$; $m = n - \nu$, where $\nu + 1$ is the multiplicity of δ_0 ; the numbers $\theta_1, \theta_2, \dots, \theta_{2m}$ are the roots of the trigonometric polynomial of order m

$$G^*(\theta) = P(\theta, \alpha)$$

(19)

$$= \Re \left[q^{2}(z) z^{n-2s+\nu} \right] \pm \left| q(z) \right|^{2} \left(1 - \left(\frac{\pi \delta_{0}}{2L} \right)^{2} \right)^{1/2},$$

where the polynomial q(z) of degree s - v is to be found from the expansion (16).

3. Minima of Polynomials. Putting

(20)
$$1 - \frac{2\alpha}{\pi} = \lambda, \qquad (-1 \le \lambda \le 1),$$

we obtain the equality

(21)
$$\int_0^{2\pi} \operatorname{sgn} G^*(\theta) G(\theta) d\theta = \lambda \int_0^{2\pi} G(\theta) d\theta + \frac{4}{\delta_0} \cos \frac{\pi \lambda}{2},$$

J. GERONIMUS

[February,

which is valid for every trigonometric polynomial

$$G(\theta) = \alpha_n + \sum_{k=0}^{n-1} \{ \alpha_k \cos (n-k)\theta + \beta_k \sin (n-k)\theta \}$$

satisfying the condition

(22)
$$\omega(G) = \sum_{k=0}^{s} (\alpha_k a_{n-k} + \beta_k b_{n-k}) = 1, \qquad (s \leq (n-1)/2).$$

Hence follows the inequality

(23)
$$\int_{0}^{2\pi} |G(\theta)| d\theta - \lambda \int_{0}^{2\pi} G(\theta) d\theta \ge \frac{4}{\delta_0} \cos \frac{\pi \lambda}{2}$$

where the equality holds true only for

(23')
$$G(\theta) = G^*(\theta) = P(\theta, \alpha), \qquad (\lambda = 1 - 2\alpha/\pi).$$

First put $\lambda = 0$; then we get

(24)
$$\int_{0}^{2\pi} |G(\theta)| d\theta \ge \frac{4}{\delta_{0}}.$$

Suppose now that $G(\theta)$ is non-negative; then

$$\int_0^{2\pi} G(\theta) d\theta \ge \frac{4}{\delta_0} \frac{\cos (\pi \lambda/2)}{1-\lambda}.$$

Supposing that $\lambda \rightarrow 1$, we get finally

(25)
$$\int_{0}^{2\pi} G(\theta) d\theta \ge \frac{2\pi}{\delta_0};$$

the equality is valid for the polynomial

(25')
$$G(\theta) = P(\theta, 0) = |q(z)|^2 + \mathcal{R}[q^2(z)z^{n-2s+\nu}].$$

We have thus proved the following theorem.

THEOREM 2. For every trigonometric polynomial

$$G(\theta) = \alpha_n + \sum_{k=0}^{n-1} \{ \alpha_k \cos (n-k)\theta + \beta_k \sin (n-k)\theta \}$$

satisfying the condition

134

$$\omega(G) = \sum_{k=0}^{s} \{ \alpha_k a_{n-k} + \beta_k b_{n-k} \} = 1, \qquad (s \leq (n-1)/2),$$

the inequality

(26)
$$\int_{0}^{2\pi} |G(\theta)| d\theta \ge \frac{4}{\delta_0}$$

is valid; the polynomial for which this minimum is actually attained is

$$P\left(\theta,\frac{\pi}{2}\right) = \mathcal{R}[q^2(z)z^{n-2s+\nu}].$$

If the polynomial is bound to be non-negative, then the minimum will be $\pi/2$ times (26) and this minimum will be attained by the polynomial

$$P(\theta, 0) = |q(z)|^2 + \mathcal{R}[q^2(z)z^{n-2s+\nu}],$$

where q(z), δ_0 , and v have the same meaning as in Theorem 1.

MATHEMATICAL INSTITUTE, KHARKOW, U.S.S.R.

1936.]