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COROLLARY 1. The absolute minimum value of k is zero; this 
value is taken on if the midpoint of the line segments (gt, gt) 
and (g, l / l ) coincide and is possible only for T an elliptic trans
formation. 

PROOF. Substituting m= — (aâ-\-vv)/(2av) into (2), we see 
that k = 0 if (a — a)/(2c) = —(aâ+i>v)/(2ap). Furthermore, we 
have Qo[ — (aâ-\-av)/(2av)\ > 0 for all G and all T of Fuchsian 
type, whereas Qo[(a — a)/(2c)] > 0 for T elliptic only. 

REMARK 3. Changing (2) to trigonometric form, one finds the 
discriminant of the resulting quadratic in p to be 

f(k) = 4(aveie + âve~iey - \6aâvv{\ ~ k2). 

This is a perfect square if and only if k = l or 0; hence (2) is 
factorable rationally in terms of the coefficients of G in these 
two cases and only in them. The factors for k = 1 are Ç5 and QQ 
of Theorem 1, and for k = 0 they are immediate from (2). 

STATE COLLEGE OF NEW MEXICO 

T H E EQUATION 2*-3*' = d* 

BY AARON HERSCHFELD 

1. Introduction. According to Dickson's History of the Theory 
of Numbers,^ Leo Hebreus, or Levi Ben Gerson (1288-1344), 
proved that 3m± 1 ^2n if rn>2, by showing that 3 m ± l has an 
odd prime factor. The problem had been proposed to him by 
Philipp von Vitry in the following form : All powers of 2 and 3 
differ by more than unity except the pairs 1 and 2, 2 and 3, 
3 and 4, 8 and 9. In 1923 an elegant short proof by Philip 
Franklin appeared in the American Mathematical Monthly.{ 

In 1918 G. Polya§ published a very general theorem which, 
as was later pointed out by S. Sivasankaranarayana Pillai,11 
proved as special cases that the equations 

* Presented to the Society, October 26, 1935. 
t Vol. 2, p. 731; see J. Carlebach, Dissertation, Heidelberg, 1909, pp. 62-64. 
i Vol. 30 (1923), p. 81, problem 2927. 
§ Zur Arithmetische Untersuchung der Polynôme, Mathematische Zeitschrift, 

vol. 1 (1918), pp. 143-148. 
|| Journal of the Indian Mathematical Society, vol. 19 (1931), pp. 1-11. 
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(1) ax — by = d, 

(2) 2X - 3y = d, 

where a and b are fixed positive integers and d^O, have at most 
a finite number of solutions in positive integers (x, y). More
over, Pillai gave an asymptotic formula for the finite number of 
solutions of the inequality 0<ax — by^n, where log a/log b 
is not rational. 

In this paper we shall prove that if \d\ is sufficiently great, 
equation (2), for fixed d, can have at most one solution, while 
equation (1) can have no more than nine solutions. 

The general existence theorems tell us in particular that the 
inequality | 2X — 3y\ ^n holds for only a finite number of pairs 
of positive integers (x, y). But they do not tell us the precise 
values of such pairs (x, y) nor exactly how many exist. We shall 
answer these questions for w = 10 by solving the six equations 
2x — 3v = d,d=±l, ± 5 , ± 7 , since we may obviously exclude 
d = 0, ± 2 , ± 3 , ± 4 , ± 6 , ± 8 , ± 9 , ± 10. Similar methods apply 
to greater values, and we summarize some results for n = 100. 

2. Special Results. If 2x-3y = d and x ^ 3 , then 3y = -d 
(mod 8). But 3 n = l or 3 (mod 8). Hence d = 5 or d = 7 (mod 8). 
Consequently for d = l, —5, — 7 there are no solutions of equa
tion (1) such that x ^ 3 . We see therefore that these equations 
have only the solutions 

22 - 3 = 1, 22 - 32 = - 5, 2 - 32 = - 7. 

There remain the cases d= — 1, 5, 7. Suppose 2X — 3V=— 1, 
so that 3y=\ (mod 2X). But if x>2, 3 belongs* to 2 ^ 2 modulo 
2X, that is, 2*~2 is the least integer e such that 3 e = l modulo 
2X. Therefore y ^ 2X~2, if x > 2, and so 

3 " - U 32*"2 - 1 è 3* - 1 > 2*, 

if x ^ 4 . Consequently 2X — 3V=—1 is impossible if x ^ 4 . Thus 
the only solutions are 

2 - 3 = - 1 = 2'6 - 3\ 

Next consider the equation 2X — 32/ = 5. Obviously we have 
as two solutions (x, y) = (3, 1) and (5,3). Suppose another solu-

* See Dickson, Introduction to the Theory of Numbers, pp. 16, 19. 
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tion (x, y) exists satisfying 2x = 3*> + 5 with 3>>3, and conse
quently x>5. Taking congruences modulo 26, 3 y = — 5 (mod 25). 
But 33 = 2 5 - 5 = - 5 (mod 25) and 3 belongs to 8 modulo 25. 
Therefore y = 3 + 8k, where k > 0. Now take congruences modulo 
26; since x > 5 , 3 ^ - 5 (mod 26). But 3 3 ^ - 5 (mod 26) and 3 
belongs to 16 (mod 26). Thus k cannot be even and it follows 
t h a t y = l l + 16fe'. 

Finally we take congruences modulo 17, noting that 3 be
longs to 16 (mod 17), so that 2^ = 3^ + 5 = - 1 0 + 5 = - 5 (mod 
17). But we can easily verify that no power of 2 is congruent 
to —5 (mod 17). Hence we have a contradiction. 

Lastly consider 2X — 3y = 7, where y>3, so that x>2. Taking 
congruences modulo 3 and then modulo 4, we see that both x 
and y are even. Therefore 

1 ^ 2*/2 - 3y<2 = 7/(2*>2 + 3y<2) < 1, 

which is a contradiction. Hence the only solution is 24 —32 = 7. 
We may summarize by tabulating our results : 

d 

- 1 

- 5 

- 7 

0, y) 
( i , i ) ; (3, 2) 

(2,2) 

(1,2) 

d 

1 

5 

7 

0, y) 
(2,1) 

(3,1); (5,3) 

(4,2) 

3. General Theorems. We have now shown that when x > 5 , 
or y>3, then \2X — 3y\ >10 . The author has verified in an un
published paper that similar methods may be used to prove 
that if x and y are positive integers such that x > 8 or 3>>5, 
then I 2* — 3y\ >100. In no case were there found more than 
two solutions of the equation (2) for any fixed d with | d\ :g 100. 
We conclude by proving that if \d\ is sufficiently great, the equa
tion 2x — 3y — d cannot have more than one solution. 

We shall use the property proved by S. S. Pillai in his 1931 
paper, previously mentioned, that given any ô > 0 and integers 
a and b such that log a /log b is not rational, there exists an 
integer Xi = #i(ô) such that for all x>xi and all positive (ax — by), 

0<ax — by>axa-8). 

Suppose that 2x-3y = 2x-3Y = d, X>x, Y>y. Then 
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2X - 2* = 3Y - 3y, 2*(2X-* - 1) = 3y{3Y~y - 1), 

2X~* = 1 (mod 3y), 3Y~y = 1 (mod 2*), 

X - * ^ 2-3*/-1, Z ^ 2 - 3 ^ S Y-y^2*-\ Y^2X~2, 

if x > 2 . 
Consider first d>0. Choose any positive ô <C 1/2 and let 

Xi = Xi(ô), where for all x>x± and 0<2x — 3y, we have 
0<2x-3y>2xa-8)>2x/2. Let us consider only the positive 
values of d greater than 2X1+5. Then 

2X > d > 2*i+5, x > xx + 5, X > x > xu 

2* = 3Y + d > 3Y è 32*~2 > 22*~2, X > 2X~2 > 2x, 

since x>5. Therefore d = 2 x — 3 F > 2 x / 2 > 2 * > J , a contradiction. 
Next, for d < 0, consider only values of d such that | d | > 3y i + 2 , 

where ^i = yi(ô), so that for all y>yi and 0<3y — 2X, we have 
0 < 3 * —2*>3»(1--*)>3t'/2. Hence, if (2) has two solutions, 

3y > | d\ > 3^+2, y > yi + 2, Y > y> ylt 

3Y = 2X - d> 2X > 2™y~1 > 3*y~\ Y > 3y~l > 2y, 

since y>2. Thus -d = 3Y-2x>3Y'2>3y> -d, a contradiction. 
In conclusion we can say of the general equation ax — by = d, 

that if \d\ is sufficiently great, this equation can have at most 
nine solutions. This is a simple consequence of the theorem due 
to C. L. Siegel,* that axn — byn = k (fixed n^3) has at most one 
solution if \ab\ is sufficiently great. For if | d\ is large enough we 
can write equation (1) in the form of at least one of nine equa
tions 

alAuz - biBv* = d, (i, j = 0, 1, 2), 

where | ̂ 4J3 | is so great that each of the nine equations must, 
by Siegel's theorem, have at most one solution. 
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* Abhandlungen Akademie Berlin, 1929, Nr. 1, 70 pp. 


