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COMPLEXES AND MANIFOLDS R E P R E S E N T E D 
BY FUNCTIONS OF REAL VARIABLES* 

BY W. M. WHYBURN 

It is the purpose of this paper to show that a wide class of 
loci in a real space of n dimensions is composed of sets which are 
complexes and manifolds in the sense of combinatorial analysis 
situs. The combinatorial approach to analysis raises the im­
portant question of determining the conditions that a real func­
tion u=-f(xi, - - • , xn) of a finite set of real variables must 
satisfy in order that this function generate a locus which can 
be identified as a cell, complex, or manifold.f Answers to this 
question form essential links between combinatorial analysis 
situs and real variable theory. Van der Waerden,J Lefschetz,§ 
Koopman and Brown,|| have studied this question for cases 
where the function u is analytic. S. S. Cairns^f has investigated 
the cases that arise for functions u tha t are continuous together 
with their first partial derivatives. The present paper deals with 
functions u which are continuous but which are not required 
to have first partial derivatives at any points of their domains 
of definition. The restrictions placed on the functions are es­
sentially those used by Hedrick and Westfall** in their general 

* Presented to the Society, November 30, 1935. 
f See Veblen, Analysis Situs, Colloquium Publications of this Society, vol. 

5, part 2. 
% Mathematische Annalen, vol. 102 (1929), pp. 360-361. 
§ Topology, Colloquium Publications of this Society, vol. 12, chapter 8. 

On page 364, Lefschetz expressed a belief that van der Waerden (loc. cit.) 
was first to establish connections between functionally defined loci and com­
plexes. It should be mentioned that a slightly earlier paper by W.M.Whyburn 
[this Bulletin, vol. 35 (1929), p. 706] contained a proof tha t a locus of a gen­
eral type was a manifold and also carried a reference to results of this type 
which S. S. Cairns had obtained but had not published. 

|| Transactions of this Society, vol. 34 (1932), pp. 231-251. 
II See his papers in Annals of Mathematics, (2), vol. 35 (1934), pp. 579-587, 

and this Bulletin, vol. 41 (1935), pp. 549-552, where references to his earlier 
work will be found. 

** Bulletin de la Société Mathématique, vol. 44, pp. 1-14, and Festschrift 
David Hubert, Berlin, 1922, pp. 74-77, or Mathematische Annalen, vol. 85 
(1922), pp. 74-77. 



256 W. M. WHYBURN [April, 

implicit function theorem. The use of this latter theorem makes 
it possible for proofs to be given without the use of partial de­
rivatives, directional derivatives, or direction cosines. This omis­
sion of derivatives is desirable since derivatives do not have a 
role in analysis situs. Continuity, on the other hand, enters into 
the transformations and correspondences of analysis situs. 

THEOREM 1. LetH:Ai^XiSBif (i = 1, 2, • • -, n), be the interior 
and boundary of an n-rectangle in the space of the n real variables 
Xx,X2j - • • ,xn, and let Kbe a closed connected subset of H. For each 
point P of K, let there exist an n-rectangular neighborhood of P, 
Hp\ ApiSxitkBpi, (i = 1, • • • , n), such that the subset of K that 
belongs to HP is identical with the set of points which satisfies a 
single equation xy=-/(xi, • • • , Xy_i, Xj+i, • • • , xn), where f is con-
tinuous and Apj<f<BPj on the set of points Api^Xi^BP{, 
(i = l, 2, • • • , j — 1 , i + 1 , • • • , n). Under these hypotheses, the 
point set K is an (n — \)-complex* 

PROOF. Let [HP] be the collection of rectangles obtained 
when each point P of K is covered as indicated in the hypotheses 
of the theorem. Since K is closed and bounded, the Heine-
Borel theorem may be applied to get a finite sub-collection of 
this collection which covers K. Let such a finite sub-collection 
be chosen and let Hi, H2, • • • , Hm be the finite collection of n-
polygons formed from this collection when each pair of rec­
tangles of the collection that have interior points in common, and 
that have the further property that the subsets of K belonging 
to them are represented by functions of the same n— 1 variables, 
is replaced by their sum and this process is continued until no 
two of the sets Hi, • • • , Hm which have interior points in com­
mon have the same n — \ variables of the set {x\, • • • , xn) as in­
dependent variables in the functions that represent the subsets 
of K that they contain. Let Hj be the boundary of Hj and £ be a 
point of K that belongs to H-{H'+H{ + • • • +Hm'). Let hv 

be the maximal connected subset of H— (H'+Hj + • • • + Hm' ) 
that contains p, together with the boundary of this maximal 
connected subset. If [hp] denotes the collection of sets obtained 
in this way, then [hp] consists of a finite set, hi, h2, - - • , hq, of 

* The terms "complex," "cell," "circuit," "manifold," • • • , are used with 
the meanings given to them in Veblen's book, loc. cit. 
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n-polygons (interiors and boundaries) each of which has its 
face in— 1)-polygons subsets of the faces of H", i?i, • • • , Hm. 

LEMMA 1. Every point of K is a limit point of a subset of K 
that is interior to some one of the polygons hi, h2, • • * , hq. 

PROOF OF LEMMA 1. The connectivity of K shows that any 
point of K which is interior to one of the sets hi, • • • , hq, is a 
limit point of points of K interior to this. If p\(ax, a2, • • • ,an) 
is a point of K not interior to any hj, p is interior to some Hr 

of the set Hi, • • • , Hm, and, with a suitable permutation of the 
subscripts of the x's, the points of K that belong to Hr are 
solutions of the equation Xi=f(x2, • • • , xn). We may therefore 
pick a sequence of points pil (an, • • • , a»w), (i = l, 2, • • • ), 
of K with p as its sequential limit point and such that a^y^a^, 
aiz^az, • • • , a,in7£an, (i = l, 2, • • • ). If x = a,\ is not a face that 
contains p and belongs to any polygon of the set h\, • • • , hq, 
then infinitely many of the points pi are interior to some one 
of the finite set hi, • • • , hq and p is on the boundary of this set. 
If x = ai is a face that contains p and belongs to one of the h's, 
then this face belongs to one of the polygons Hr, s^r, in which 
an equation x% = g(xi, x2, • • • , xn) holds (after a suitable choice 
of subscripts on the x's). If we make use of the single-valuedness 
and continuity of ƒ and g, we are able to choose the points pi 
so that they have the additional property an^ai, (i — 1, 2, • • • ). 
With this choice of the points pi, p<i, • • • , only a finite number 
of them will lie on faces of the polygons hi, • • • , hq and hence 
infinitely many of them will be interior to some one of this 
finite set of polygons and p will be on the boundary of such a 
polygon. This completes the proof of the lemma. 

LEMMA 2. Let Ki be the subset of K that is on the boundary of 
hi and is such that each point of Ki is a limit point of points of K 
that are interior to hi. The set Ki is a finite collection of (n — 2)-
circuits each of which is the boundary of an (n—\)-cell that is a 
subset of K and ts interior to hi. 

PROOF OF LEMMA 2. We use mathematical induction. The 
case n = 2 yields a set of plane polygons for hi, h2, - • • , hq, with 
faces parallel to the coordinate axes. Let hi be a subset of Hr 

and let X2=~f(xi) be the equation associated with Hr. Since this 
equation is satisfied by the subset of K in hi, it follows that Ki 
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has at most one point, [c, f(c)], in any face X\ = c of hi. If hi has 
a face x% = c which contains a point of Ki, then such a face must 
belong to a polygon of the set Hi, • • • , i l m in which an equation 
xi = g(x2) holds, since Hr has no face of the form x2~ constant 
which contains a point of K. The equation Xi = g(x2) yields at 
most one point of Ki on this face. The set Ki consists of a finite 
number of zero cells and the single-valuedness of ƒ and g shows 
that each of these can be on the boundary of at most two maxi­
mal connected subsets of K that belong to the interior of hi. 
If k is a maximal connected subset of K that is interior to hi, 
the equation x2 =f(x±) establishes a one-to-one continuous corre­
spondence between ki and a closed interval on the Xi axis, 
where ki is k together with its boundary. The set ki is therefore 
an (n — 1)-complex consisting of an (n — l)-cell interior to hi and 
its (n — 2)-circuit boundary composed of two of the zero cells 
of Ki. Since each point of Ki is on the boundary of at least one 
set of type k and is not on the boundary of more than two such 
sets, it follows that the lemma is true for the case n = 2. 

Let the lemma hold up to and including the case n— 1. In the 
case of n variables, let hi be one of the polygons of the set 
hi, - - -, hq and let Hr be a polygon of the set Hi, • • • , II m that 
contains hi. Let the equation xi=/(x2 , • • -, xn) hold for the sub­
set of K that belongs to Hr. The subset of Ki that belongs to 
any face of the form x3- = c, (j = 2, • • • ,n), satisfies the equation 
Xi =j\X2i , Xj—i, c, Xj+i, , xn) r \x2, , Xj—i, Xj.i^i, , xn). 
The single-valuedness of F together with an application of 
the lemma for the case n — 1 shows that this intersection con­
sists of a finite number of in — 2)-cells and their bounding 
in — 3)-circuits. If Ki intersects a face of the type Xi = c, where 
c is a constant, then such an intersection satisfies an equation 
of the form x2 = g(x\, x3, • • • , xn) (since such a face must belong 
to some Hj other than Hr). The single-valuedness of g together 
with an application of the lemma for n — 1 shows that this in­
tersection is a finite set of (n — 2)-cells together with their 
bounding (n — 2)-circuits. Let k be a maximal connected sub­
set of K that is interior to hi and let ki denote k together with 
its boundary. The equation Xi=/(x2, • • • , xn) establishes a one-
to-one continuous correspondence between ki and an (n— 1)-
complex [composed of an (n — 2)-circuit and the (n — l)-cell 
that it bounds] in the hyperplane #i = 0. Hence ki is an (n— 1)-
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complex consisting of an (n — l)-cell and its bounding (n — 2)-
circuit. The lemma follows at once when it is noted that each 
point of Ki is on the boundary of at least one maximal con­
nected subset of type k and (from the single-valuedness of 
the functions ƒ and g) no such point is on the boundary of more 
than two sets of type k. 

PROOF OF THEOREM 1. The theorem follows at once from the 
lemmas. The set K is an in — l)-complex composed of the 
(n — l)-cells of Lemma 2 together with their boundaries which 
are the (n — 2)-circuits described in that lemma. Lemma 1 
shows that all of K belongs to this complex, while the fact that 
the (#—1)-cells are mutually exclusive follows from the ob­
servation that no two of the sets hi, • • • , hq have interior 
points in common. A subdivision of the (n — 2)-circuits of this 
complex into cells of orders n — 2,n — 3, • • • , 0 i s obtained when 
the reasoning used in the proof of Lemma 2 is repeated, with 
slight verbal modifications, for the in — 1)-polygons obtained 
on the faces of hi, • • • , hq. 

THEOREM 2. Under the hypotheses of Theorem 1, if the set K 
is interior to TI, K is a closed (n — 1) -manifold. 

PROOF. From Theorem 1, K is an (n — 1)-complex. Since K is 
interior to H, we may make the neighborhood Hp of Theorem 1 
so that it is interior to H. The equation Xj = (xi, • • • , #/_i, 
Xj+i, • • • , xn) establishes a one-to-one continuous correspond­
ence between the subset of K in HP and the interior and bound­
ary of an (n — 1)-rectangle in the hyperplane x3- = 0. Hence the 
subset of K in HP is an (n — l)-cell and boundary and thus each 
point of K has a neighborhood which is an (n — l)-cell. Hence 
K is a closed (n — l)-manifold.* 

COROLLARY. If K is interior to H and the hypotheses of Theo­
rem 1 are satisfied, K is an (n— \)-circuit that forms the boundary 
of an n-cell interior to II. 

THEOREM 3. Let the real function f{%i, • • • , xn) be contin-

* This theorem would also follow as a corollary to the proof of Theorem 1 
if it were observed that this proof shows each (n— 2)-cell of the complex K to 
be on the boundary of at least one but not more than two (n — 1)-cells.When 
K is interior to H, the single-valued functions that define i t in a neighborhood 
of any point p make each (n — 2)-cell incident with exactly two (n — l)-cells. 
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uous in an open portion D of the space of the n real variables 
(xi, • • • , xn). Let H be an n-rectangle together with its interior 
which is a subset of D and let K be the points of H which satisfy 
f(xx, • • • , xn) = 0. For each point p of K, let there exist an n-
rectangular neighborhood throughout which some one of the dif­
ference quotients a3-, (j= 1, 2, • • • , n), is definite in sign, where 

J\X\, j Xj—ij Xj , X/-j-l, ' ' * j Xn) J\%1) ' * ' » %n) 

a. = ___ m 
Jv j «v ƒ 

Under these hypotheses, the set K is an (n— 1)-complex. Further­
more, if K is interior to H, K is a finite set of closed (n — 1)-
manifolds. 

PROOF. This theorem is an immediate consequence of Theo­
rems 1 and 2 when account is taken of an implicit function 
theorem by Hedrick and Westfall.* This implicit function theo­
rem applies directly to show that the hypotheses of Theorem 1 
are satisfied for each connected subset of K. The same implicit 
function theorem shows that K consists of a finite number of 
maximal connected subsets. The latter fact follows from the 
observation that the sum of infinitely many such subsets would 
have a limit point in K and the uniqueness part of the im­
plicit function theorem would break down at such a limit point. 
The conclusions of Theorem 3 follow from the conclusions of 
Theorems 1 and 2. 

THEOREM 4. Let HiAi^Xi^Bi, (i = 1, 2, • • • , n), be the in­
terior and boundary of an n-rectangle in the space of the n real 
variables (x\, • • • , xn) and let K be a closed, connected subset of 
H. For each point p of H, let there exist an n-rectangular neighbor­
hood Hp:APiSxiSBpi, (i = l, • * • , w), of p such that the subset 
of K that belongs to Hp is identical with the set of points which 
satisfies a unique system of r equations : 

where ji, - • - , j n is an arrangement of the indices 1, 2, • • • , n 
that is fixed for each Hp, and where the functions g\, • • • , gr are 

* Loc. cit. 
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continuous and satisfy APJl<g\<BPjv • • • , APJr<gr<BPJr on 
the point set Api^Xi^Bpi, (i=jr+ï, • • • , in). Under these 
hypotheses, the point set K is an (n — r)-complex. 

PROOF. Let ^-polygons hi, • • • , hq be constructed as they were 
in the proof of Theorem 1 (with the variation that the role of the 
single function ƒ of Theorem 1 is now played by the r functions 
gi, • • • , gn). Consider the subset k of K that belongs to hi and let 
the notation be chosen so that Xi = gi(xr+i, • • • , xn), • • • , 
Xr = gr(xr+i, • - • , xn) are the equations satisfied by the points 
of k. The point set k is in one-to-one continuous correspondence 
with a set of points k' in the n — r+1 plane: X2 = 0, • • • , # r= 0 if 
we let the point P(x\, ) of k correspond 
to the point P'(xu 0, 0, • • • , 0, ) of k'. Further­
more, the set k' satisfies the equation Xi = gi(xr+i, • • • , xn). 
An application of Theorem 1 for the case n — r+1 shows that 
k' is an (n — r)-complex. Since k is in one-to-one continuous cor­
respondence with k', it follows that k is also an (n — r)-complex. 
An application of this same type of reasoning shows that the 
subset of k that belongs to any face of hi as well as the subset of 
k that is common to a face of hi and a face of hj, j^i, is an 
(n — r— l)-complex. I t follows that K is an (n — r)-complex with 
its (n-r)-cetts interior to the polygons hi, • • • , hq and that the 
(n — r—1)-circuits that bound these cells lie in the boundaries 
of these polygons. 

An adaptation of the proof of Theorem 2 yields the following 
theorem. 

THEOREM 5. Under the hypotheses of Theorem 4, if the set K 
is interior to the rectangle H, then K is a closed (n — r)-manifold. 

THEOREM 6. Let the real functions f\(x\, • • • , xn), • • • , 
fr(xi, - • • , xn) be continuous in an open portion D of the space of 
the n real variables (x\y • • -, xn). Let HiAi^Xi^Bi, (i = l, • • • , 
n), be an n-rectangular region which is a subset of D and let K 
be the set of points of H which satisfy the equations f \(x\, • • • , xn) 
= 0, • • • , fr(xi, • • • , xn) =0 . For each point p of K let there 
exist an n-rectangular neighborhood of p and an arrangement 
ju ' * • » jn of the indices 1, 2, • • • , n such that if y% = Xjv 

0* = 1, • • • , n), gm(yi, • • • , yn)=fm(xu • • • , xn), (m = l, 
2, - • • , r), then the difference Jacobian 
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# 1 1 

# 2 1 

1 ari 

#12 * 

#22 * 

#r2 * 

' # lr 

' #2r 

drr 

lgi(yi, • • • , yk-i, y I, ytf+i, • • • > y»9, }v+i, • • • , yn) 

- gi(yi, • • • , ?*> y*°+l> ' • • , ^r°, 3^+1, ' • ' ,yn)] 

as well as the elements of the principal diagonal and the minor ob­
tained by deleting the first i rows and the first i columns, (i = l, 
2, • • • , r— 1), are definite for all choices of the points in this 
neighborhood. Under these hypotheses, the set K is an (n — r)-
complex. Furthermore, if K is interior to H, it is a finite set of closed 
(n — r) -manifolds. 

PROOF. An application of the Hedrick-Westfall implicit 
function theorem (loc. cit.) shows that K consists of a finite 
collection K\, • • • , Km of maximal connected subsets each of 
which satisfies the hypotheses of Theorem 4. An application 
of Theorem 4 to each of these sets yields the fact that K is an 
(n — r)-complex. In the case where K is interior to H, Theo­
rem 5 shows that K\, • • • , Km are closed (n — r)-manifolds. 

In conclusion, it might be remarked that the hypotheses of 
Theorems 3 and 6 do not require the existence of derivatives of 
the functions that enter into these theorems.* On the other 
hand, the hypotheses of these theorems are met if the ordinary 
implicit function theorem hypotheses (involving derivatives of 
the first order) are valid. This omission of derivatives seems 
desirable since properties of analysis situs are not dependent 
upon derivatives. The assumption of continuity seems more 
essential since the transformations and correspondences of 
analysis situs are required to be continuous. 

UNIVERSITY OF CALIFORNIA AT LOS ANGELES 

* An interesting example of a function that meets the hypotheses of these 
theorems and of the Hedrick-Westfall theorem but not those of the ordinary 
implicit function theorem, is obtained by making use of the well known ex­
ample of a continuous, monotone, non-absolutely continuous function (see Hille 
and Tamarkin, American Mathematical Monthly, vol. 36 (1929), pp. 255-264). 
If x is added to this function, an increasing function is obtained. The Hed­
rick-Westfall theorem applies directly to yield an inverse function x — g(y). 


