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REDUCIBLE BOOLEAN FUNCTIONS
BY J. C. C. McKINSEY

In this note I establish a condition that a Boolean function
of n variables, say f, be reducible to a product of two Boolean
functions fi1 and f,, where f involves variables not occurring in
fi; and, similarly, that f be reducible to fi+f2, or to fi o fs, or
to fidf..* These results are of interest in connection with the
general theory of Boolean operations, since every Boolean oper-
ation can be regarded as a Boolean function.

In order to state my results briefly, I use the symbol @, which
stands ambiguously for any one of the four operations X, +,
o, A. Thus each of my theorems really comprises four theo-
rems, which can be obtained from the given theorem by substi-
tuting first X for @ throughout, then +, then o, and then A.
The theorems now follow.

TaEOREM 1. If a Boolean function

fley, -+ xa)

be given, then a necessary and sufficient condition that there exist
a g and an h, so that

f(xl)"')xn)=g(x1:"')xp)eah(xq"“;xn)y

) @g=p+1),
15 that

* The operation @ o b is defined by a o b=ab’+a’b; and the operation aAb
is defined by aAb=ab-+a’b’. These operations, which are mutually dual, are as-
sociative and commutative, and satisfy the further laws: (a 0 )’ =a o b’ =aAb,
a o 1=aA0=a’, a 0 a=aAa’=0, a 00=aAl=a. For a further discussion, see
Bernstein'’s paper, Postulates for Boolean algebra involving the operation of com-
plete disjunction, to appear in the Annals of Mathematics. For a detailed treat-
ment of a o b, see the two papers by M. H. Stone: Postulates for Boolean
algebra and generalized Boolean algebra, American Journal of Mathematics,
vol. 57 (1935), pp. 703-732, and Subsumption of the theory of Boolean algebras
under the theory of rings, Proceedings of the National Academy of Sciences,
vol. 21 (1935), pp. 103-105. Stone writes aAb for what I designate by a o b,
and he does not discuss the relation which I denote by aAb.
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f(xl, C e X1y By s By Xprly t t t xn)
D f(y, - 5 a1y B0y " " s Bpy Vpkty 5 Yn)
=f(x1, e X1y Byt s Bpy Yoyt ;yn)
@ f(yy, - -5 Va1, Bay 0 Bpy Xpr1, t c ¢, Fn)

identically.*

Proor. I first prove the theorem for the case that ¢=p-+1.
To see that the condition is necessary (when ¢=p-+1), suppose
that there exists a g and an % so that

(1) fl@y, e, ) = g@y, - -, %) @ (@ppr, - - 0, X))
Then
f@y, o 20) @ f(yy, -+, ya)
= [g(as, - -+, %) @ h(ppr, - - -, 2]
© [g(ys, - ¥0) ® h(ypsr, - -5 )]
= [gCos, %) @ B(ypur, -+, 9]
(2)
@ (g, - ¥p) ® h(apyr, - -, @) ]
= f(®1y Fpe Vmrty s Va)

EBf(yl; s Vpy X1y 7, xn):

as was to be shown.

To show that the condition is sufficient (when ¢=p+1), sup-
pose that f(x1, - - -, x,) is such that (2) holds. We must now
distinguish the four cases. If @ = X, define

g(xl?“"xp) = Zf(xly' Ty Xpy Zpily C ot )Z")i

2;=0,1
h(xp+17 ) xn) = Zf(zly Ty 8py Xpyly Tt xn)
2;=0,1
Then
glar, - -y Hp) B(Xpya, - oy Xn)
=[ Zf(xl} Ty Xpy Bpr1l vt 7zn)]
2;=0,1

* Or, what amounts to the same thing, that the stated condition hold for
the x's, y's, 2's=0, 1. Thus whether the condition is satisfied can be seen di-
rectly from the discriminants of f.
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[ Zf(zh Ty 8py Xpyly ',Zn)]
2;=0,1
= Zf(xb Ty Xpy Bpt1y 7Zn)f(zly C oty 8py Xptry t ot }x")
2;=0,1
= Zf(xh T xﬂ>f<zly o ’Zn)
2;=0,1
=f(x1" e 7xn) Zf(zly' e ,Zn)
24=0,1
= f(xl; ) xn)'
If @ =+, define
g(xl) Ty xﬁ) = II f(xly Ty Xpy Bpy1y, T, Zn),
2==0,1
h(xp"f-li T xn) = II f(zl’ oty Bpy Xpg1y t xn))
2¢=0,1
and proceed as above. If @ = o, define
g<x1"" y %p) =f(0; ’O)Of(xb"‘ ’xPyO"";O))
h(pity -y @) = f(O, 0, Xppay -0, @)
Then
g<x17 ] xp) o h(xzﬂ—l, ] xn)
=f<0’ )O)Of(xb' s ;me:' T ’0)
°f<0’ T ,0, Xpt1y = " ,x")
=f(0’ ' 70)Of(0a' T )O)Of(xlﬁ" ' )xn)
= Oof(xh Ty xn)
= f(@1, -+, ¥).
If & =A, define
g<x17"' )xp) =f<0: ’0>Af(x1" ’)xmo”":o):
h<x10+11 Ty xn) =f<0) T 30) Xpr1y © 7, xn))

and proceed as above. This completes the proof of the theorem

for the case ¢g=p+1.
For the general case, to say that

(3) f(xly T

,xn) =g(x1’...

’x:l)> © h(xq" t

, %n)
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holds for every x,, - - -, %, is equivalent to saying it holds for
Xg+ + -, %,=0, 1. Hence saying that (3) holds for every
X1, - -+, %, is equivalent to saying that the following equa-
tions hold for every x1, - + -, %41, Xpi1, * * * 5 Xn'

f(xl,"‘,xq—1,1,"‘,1,xp+1,"',xn)
T‘_g(xl,"’,xq‘—l,l,"',l)e?h(l,"',l,x?ﬁl,"',xn),
S ; .
f(xl,"’,xq—l,o,"‘,O,xp+1,"‘,xn)
=g(x1,~-,xq_1,0,~~' ,0)@},(0,... ,O,xp+1,"‘ ’xn).

It will be noticed that each discriminant of g(xy, - - -, x,), and
each discriminant of A(x,, - - -, x.), occurs in just one of the
equations (4). Hence to say that there exists a g(xy, - - -, %)
and an k(x,, - - -, x,) so that (3) holds identically is equivalent
to saying that there exist elements g(1, - - -, 1,1, - - -, 1), -+ -,
g0, -+, 0,1, R, 1,1, 1), R
1,0, - -, 0) so that the first equation of (4) holds identically,
and similarly for each of the other equations of (4). Hence, by
the first part of the proof, to say that (3) holds identically is
equivalent to saying that the following set of equations hold
identically:

f(xl,"',xq-—l,l,"',1,xp+1,"',xn)
@f(yl,"',yq—l,l,"‘,lyyp+1,"',yn)
=f(x1,...’xq_1’1’...’1’yp+1’...’yn)
E.Bf(yl,"“,yq—l, 1,....’ 1, xp+1,"", xn),
& . . :
f(xl,”‘,xq—l,o,“',O,xp-i—l,"',xn)
@f(yl"..’yq_l,()’...’()’yp_'_l’...,yn)
=f(x1,"',xq—l,0, -'-,O,yp+1,-~,yn)

®f(yl7"' 7y<1—1707"' 70; Xpt1, " >xn)~

But the set (5) is equivalent to the single condition given in the
statement of the theorem.

I now give a partial generalization of Theorem 1 to the case
where f(xi, - - -, x,) is reducible to a product (or sum, - - -) of
three functions. The generalization is not complete, in that it
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covers only the case where no two of the three functions involve
a common variable. The proof, which is closely analogous to the
first part of the proof of Theorem 1, is omitted.

THEOREM 2. If a Boolean function f(x1, - - -, x.) be given, then
a necessary and suffictent condition that there exist functions g1, gs,
g3 so that

J(CREEES
= gu(®1, -+, %) D ga%pr1, - -, Xg) D ga(@orr, -+, Xn)
1S that
f@y, oy %0) © f(yy, -, Ya)
= f(x1, 5 Xpy Ypr1, - In) B f(Vy -, Yy Tppr, 5 %)
=f(x1,~~,xq,yq+1,~--,yn) @f(yl,"';yq,xq-}—l,"",xn)
identically.

From Theorems 1 and 2 we have immediately the following
theorem.

THEOREM 3. If there exist functions g, and g, and also functions
g3 and g4 so that

oy ooy wa) = galon, - -y %) @ ga(®pyr, - - 5 ¥,
Sy, -y wa) = ga(wy, - -+, @) @ gal@orn, - -, %), (2 <),
then there exist functions ki, ks, ks so that
JCTEERE'S
= kl(xl, cee, %) B kz(xp“, N P k3(xq+1, Ce e ).

Theorems 2 and 3 are readily generalized to the case where
we express f as a product (sum, - - -) of any finite number of
other functions.
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