
CONVEX EXTENSION AND LINEAR INEQUALITIES* 

BY L. L. DINES 

A few years ago, at the Des Moines meeting, it was my privi­
lege to address the Society on the subject Linear inequalities. 
In its simplest form the problem there considered had to do with 
a system of conditions 

n 

(1) X) dijXj > 0, 0' = 1, 2, • • • , m), 

the coefficients a»,- being given real constants, and the Xj un­
knowns to be determined so as to satisfy the given conditions. 
The treatment was entirely analytic, and the aim was to de­
velop a theory dictated by analogy with the theory of linear 
equations. 

Today my purpose is to focus attention on geometric aspects 
of the theory, and in particular to show its close relationship to 
a certain geometric notion which in recent years has been useful 
in many investigations in analysis. 

Let us consider an ^-dimensional euclidean space U of points 
u = (ui, u2, - • • , un). A set of points in U is said to be convex 
if the membership of two points u{1) and w(2) in the set implies 
the membership of all points on the line segment joining w(1) 

and w(2). A given set may or may not be convex, but any set 5DÎ 
may be extended so as to be convex by adjunction of the neces­
sary points. The resulting set, which may be defined logically 
as the greatest common subset of all the convex sets which con­
tain SDÎ, will be called the convex extension of 2ft and denoted 
by cm)-

This extended set, under various names and definitions, has 
been the subject of considerable study, and has been useful in 
many applications. One may refer to Minkowski's Geometrie der 
Zahlen, 1910; to Carathéodory's paper Ueber der Variabilitâts-
bereich der Fourierschen Konstanten in the Rendiconti del Circolo 
Matematico di Palermo (vol. 32 (1911)); or to the recent com-

* An address delivered before the Society by invitation of the Program Com­
mittee, at Lexington, Kentucky, November 30, 1935. 
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prehensive work by Bonnesen and Fenchel entitled Theorie der 
Konvexen Körper, 1934, which includes an extensive bibliogra­
phy.* 

Let us note some of the properties of the convex extension 
C(9K), limiting ourselves for simplicity to the case in which the 
original set 2)î is closed and bounded. The convex extension is 
easily seen to be closed, bounded, and perfect if 9ft contains 
more than a single point. I t has the same dimensionality as the 
set 5DÎ, and if it is truly w-dimensional,t it possesses inner points. 
I t possesses two further striking properties, rigorously estab­
lished by Carathéodory, each of which is indeed characteristic 
of the convex extension. 

The first characterizes the points of C($D?) in terms of the 
planes ((n — l)-flats) in which they lie; and some preliminary 
definitions and remarks must precede its statement. 

A plane {{n— l)-flat)in U isthelocusofpointsw = (wi,w2, • • ' ,un) 
satisfying a linear equation 

n 

T(U) = Co + ]>2 ciui = 0, 

in which not all the coefficients c are zero. Any such plane de­
termines two open half-spaces in U, consisting respectively of 
the points u for which w(u) > 0 and ir(u) < 0 . Each of these half-
spaces becomes closed upon the adjunction of the points of the 
bounding plane TT(U)—0. Relative to our given closed and 
bounded set SDÎ, the plane ir(u) = 0 will be called : 

(1) a bounding plane (Schranke), if the points of 9JÎ are all in 
the same one of the two open half-spaces determined by ir(u) = 0 ; 

* Reference should also be made to the following two very recent articles 
which of course do not appear in the bibliography of Bonnesen and Fenchel: 
Elementare Theorie der konvexen Polyeder, by Weyl in Commentarii Mathe­
matici Helvetici, vol. 7 (1935); and Integration of functions with values in a 
Banach space, by Garrett Birkhoff in the Transactions of this Society, vol. 38 
(1935). 

As to terminology, the most commonly used name for what I have called 
the convex extension is the "konvexe Hülle" (or convex hull) of a set of points. 
This name, as it is used, seems to me not only inappropriate but indeed mislead­
ing. It might very fittingly be used to designate the aggregate of boundary 
points of the convex extension of a closed and bounded set. 

t The term truly «-dimensional will be used to describe a set of points which 
is in an «-dimensional space but in no (« — l)-flat of that space. 
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(2) a supporting plane (Stiltzebene), if the points of 9ft are all 
in the same one of the closed half-spaces determined by ir(u) = 0, 
and at least one point of 9K is in the plane ir(u) = 0 ; 

(3) a separating plane, if each open half-space determined by 
7r(w) = 0 contains a point of 9ft. 

We can now state the first of Carathéodory's characteristic 
properties of C(9ft). 

PROPERTY CI . The convex extension of 9ft consists of those 
points of U through which pass no bounding planes of 9ft. Fur­
thermore, the inner points of the convex extension are those 
through which pass no supporting planes, and the boundary 
points are those through which pass supporting planes. 

This characterization furnishes an ideal geometric representa-
tion for the study of linear inequalities. To apply it to our sys­
tem 

n 

(1) X) aax? > °> (* = 1J 2, • • • , w), 
2 = 1 

we take for the set of points 9ft, the m points 

9ft: (aih ai2, • • • , ain), (i = 1, 2, • • • , m), 

and consider the relation of this point set 9JI to the planes 

n 

X CjUj = 0 
?=i 

through the origin. 
If any one of these planes is a bounding plane of 9ft, its co­

efficients (ci, c2, • - - , cn) (or their negatives) constitute a solu­
tion of (1). And conversely, to every solution of (1) there corre­
sponds a bounding plane of 9ft through the origin. Hence we 
have the following theorem. 

THEOREM 1. A necessary and sufficient condition for the exist­
ence of a solution of the system of inequalities (1) is that the origin 
(0, 0, • • • , 0) shall not belong to the convex extension of 9ft. The 
solutions are the sets of coefficients (appropriately signed) of the 
bounding planes of 9ft through the origin. 

The distinction between inner points and boundary points of 
C(9ft) leads to an interpretation of the weaker system of in­
equalities considered by Minkowski 
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n 

(2) Yl aax3 = °> (f = 1, 2, • • • , w). 

THEOREM 2. A necessary and sufficient condition f or the exist­
ence of a non-trivial* solution of the system of inequalities (2) is 
that the origin shall not be an inner point of the convex extension 
of 9DÎ. The solutions are the sets of coefficients {appropriately 
signed) of the bounding planes and the supporting planes of Wl 
through the origin. 

The two theorems just stated were obtained in essence by 
Miss R. W. Stokes in her dissertation published in the Transac­
tions of this Society (1931). The geometric method she used 
enabled her also to study the character and representation of 
the solutions of the systems (1) and (2). The so-called funda­
mental solutions which play an important role in the analytic 
theory of Minkowski correspond to those supporting planes 
through the origin which contain n—\ points of SO? which lie 
in no common (n — 2) -flat. The general solution is a linear com­
bination of the fundamental solutions, with positive coefficients 
in the case of (1) and non-negative coefficients in the case of (2).f 

Recalling the manner in which Theorems 1 and 2 followed 
from a property of the convex extension C(2ft), we note that it 
is not essential that the number of points in 9DÎ be finite, that is, 
that the number of inequalities be finite as in (1) and (2). We 
may with equal ease consider systems 

n 

(lp) E ƒƒ(*)*/ > 0, (p on the range $ ) , 

and 

* Since the system (2) always admits the solution Xj—Q, 0*=1, 2, • • • , n), 
this will be called the trivial solution. The system (2) may admit other solutions 
for which the equality sign holds for every i. This will be the case if and only if 
the set$)? lies in an (n — l)-flat through the origin. This is consistent with the 
theorem, since in that case the set C(jffl) has no inner points. 

f The geometric method of approach has also been used by Haar, Ueber 
lineare Ungleichungen, Szeged Acta, sectio scientiarum mathematicarum, vol. 2 
(1924); Fujiwara, On the system of linear inequalities and linear integral in­
equality, Proceedings of the Imperial Academy, vol. 4 (1928); Dines and 
McCoy, On linear inequalities, Transactions of the Royal Society of Canada, 
vol. 27 (1933). 
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(2p) EMp)*i ^ 0, (p on the range $ ) , 

where $ is any class of elements py the functions fj(p) are real-
valued bounded functions on the range *$, provided the set of 
points 2ft represented parametrically in the space U by 

99?: Ul = Mp), u2 = ƒ,(#), • • • , « » = /n(^), (ƒ> on $ ) , 

is a closed set. The natural generalizations of Theorems 1 and 2 
follow immediately.* However the following equivalent state­
ment is more interesting from the point of view of analysis. 

THEOREM 3. A necessary and sufficient condition that every 
linear combination 

n 

(3) X) cif i(P) y (P °n range <$) 
3 = 1 

of the functions ƒ,-(ƒ>) shall change sign or vanish on ty is that the 
origin (0, 0, • • • , 0) shall belong to the convex extension of SIR. A 
necessary and sufficient condition that every linear combination (3) 
shall change sign on $ is that the origin shall be an inner point of 
the convex extension of (jffl. 

So far our discussion has been based on the first of Carathéo-
dory's characteristic properties of the convex extension. Let us 
now consider his second property. 

PROPERTY C2. The convex extension of SD? consists of those 
points of U which can be the centroids of positive mass distribu­
tions (of total mass unity) at suitably chosen points of 50Î. 

Carathéodory showed that only a finite number (at most 
n + 1) of points of 9K are necessary thus to determine any point 
of C(9J?) as a centroid. Hence Property C2 can be expressed in 
analytic terms by saying that C(SDî) consists of those points of 
U whose coordinates admit a representation of form 

r 

(4) Uj == £ Mi«<ƒ, (j = 1, 2, • • • , » ) , 

where 
(5) (un, ui2, • • • , uin), (i = 1, 2, • • • , r ) , 

* Dines and McCoy, loc. cit., p. 59. 
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is a set of points of 9ft, and 

r 

Mi > 0 , ]C Mi = 1 • 
i = l 

The representation (4) of a given point of C(9ft) is of course 
not in general unique, and the possibility of variation is of in­
terest, particularly in seeking a distinction between inner points 
and boundary points. The inner points are characterized by the 
fact that they admit such representation in terms of a truly 
n-dimensional subset of 9ft. Remembering that the simplest set 
of this sort consists of n + 1 points, one is tempted to associate 
that number with the representation of inner points. But such 
an association is erroneous. I t is true that a point u which admits 
the representation (4) in terms of a truly ^-dimensional subset 
of n + 1 points of 9ft is an inner point of C(9ft), indeed of the 
n-dimensional simplex having these points as vertices. But not 
every inner point of C(9ft) necessarily admits such representa­
tion. For example, if n = 2 and 9ft consists of the vertices of a 
square, the center of the square is an inner point of C(9ft) but 
it cannot be given the suggested representation in terms of three 
vertices. The following general statement can be made. An inner 
point of C(9ft) can be represented in terms of a truly w-dimen-
sional subset which consists of not more than In points of 9ft.* 

For finite sets 9ft, the inner points of C(9ft) are characterized 
in a slightly different manner in the following theorem, of which 
we shall see an application and an interesting analog for a cer­
tain type of infinite sets. 

THEOREM 4. If 9ft is a truly n-dimensional finite set of points, 
the inner points of the convex extension C(9ft) are precisely those 
for which all points of 9ft may be included in the set (5) of the 
representation (4). 

The proof, which is not so simple as one might expect, is quite 
similar to that of Theorem 12 in the paper by Dines and McCoy. 

For infinite sets 9ft, one is naturally led to attempt the repre­
sentation of the points of C(9ft) by some of the infinite summa­
tion processes. Let us suppose, for instance, that 9ft consists of 
the points of a continuous arc defined parametrically by 

* Dines and McCoy, loc. cit., pp. 61-63. 
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(6) «1 = / i f » , U2 = M%), ' ' ' , «n = ƒ»(#), ( ö ^ ^ ) . 

The obvious suggestion from analogy is that the points u of 
C(9K) should be expressible in the form 

(7) Uj = I n(x)fj(x)dx, (j = 1, 2, • • • , »), 
J a 

the function /z(#) being non-negative and such that 

/
li(x)dx = 1. 

a 

But caution is necessary here. It is easily seen that every 
point ü expressible in form (7) belongs to C(2W). For otherwise 
there would be a bounding plane 

2 Cj(uj — üj) = 0 

through ü, such that 

n 

11, CJ(JM - «y) > 0, ( 0 ^ ^ ) ; 

whence, on multiplying both sides by JU(X) and integrating, one 
would have the contradiction 

n 

]T) Cj(üj — Üj) > 0. 

But the converse is not true, as the following simple example 
will show. Let the arc in question be the circular quadrant 

7T 7T 

U\ — cos — x, u2 = sin — x} (0 ^ x ^ 1). 

The point (wi, w2) = (1,0) belongs to C(SDÎ). But there is no non-
negative function /z(#) such that 

J» 1 TT f 1 7T 

jLt(x) c o s — x d x , 0 = I /*(#) sin — xdx, 
0 2 J 0 2 

/

jj,(x)dx = 1. 
0 
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Obviously the difficulty here is due to the fact that (1, 0) is 
a boundary point of C(SDî). If we consider only inner points, the 
following interesting analog of Theorem 4 is valid. 

THEOREM 5.* If the continuous arc (6) does not lie in an (n—1)-
flat, the inner points of its convex extension are precisely those 
points u whose coordinates can be expressed in the form 

(8) Uj = I n(x)f,{x)dx, (j = 1, 2, • • • , ») , 
J a 

where fi(x) is continuous, and 

> b 

fi(x)dx = 1 , JJL(X) > 0 , (a ^ x ^ b). ƒ 
But in view of the nature of the problem, one can hardly over­

look the fact that the Stieltjes integral is the ideal means for 
representing points of the convex extension. Relative to the con­
tinuous arc (6) we have the following theorem, the first part of 
which is due to F. Riesz.f 

THEOREM 6. The convex extension of the continuous arc repre­
sented parametrically by (6) consists of those points u which admit 
a representation 

(9) Uj = I f,{x)da(x), (j = 1, 2, • • • , n), 
J a 

where a(x) is a monotonie non-decreasing function such that 

(10) f da(x) = 1. 
J a 

If the arc does not lie in an (n-l)-flat, the inner points of the 
convex extension are those which admit the representation (9) with 
a(x) a monotonie increasing function satisfying (10). 

* Proved by Schoenberg, this Bulletin, vol. 39 (1933). It appears, however, 
tha t Schoenberg's hypothesis that the functions ƒ7(x) be linearly independent 
should be replaced by the more restrictive condition that no linear combination 
of these functions be constant, which is equivalent to our hypothesis. 

Another proof may be found in Fenchel's Geschlossene Raumkurven mit 
vorgeschriebenem Tangentenbild, Jahresbericht der Deutschen Mathematiker-
Vereinigung, vol. 40 (1930). 

t Annales de l'École Normale, vol. 28, pp. 56-57. 
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The proof, in view of our previous discussion, is quite simple. 
From well known properties of the Stieltjes integral it follows 
that the finite sum in formula (4), which represents any point 
of the convex extension, can be replaced by a Stieltjes integral 
of form (9) with a(x) satisfying (10). It suffices to take for a(x) 
a step function with jumps of magnitude pi at suitably chosen 
points. 

Conversely, if a point ü admits the representation (9) with 
a(x) monotonie non-decreasing and satisfying (10), the point 
belongs to the convex extension. For otherwise there would pass 
through it a bounding plane 

n 

y ^ Cj(uj — üj) = 0 
3=1 

such that 

n 

(11) 2 C,'(JM - üj) > 0, (a S x S b). 

If now we denote the left side of (11) by F(x), so that 

n 
F(%) = Z) c3{f3{x) - üj), (a ^ x ^ b), 

we obtain a contradiction in the Stieltjes integral 

I F(x)da(x). 
J a 

Since F{x) is positive, this integral must be positive, while its 
evaluation by use of (9) (with u = ü) and (10) shows it to be 
zero. 

To prove the second part of the theorem, we observe that 
formula (8), which will represent any inner point of the convex 
extension, can be thrown into the form (9) by taking 

}x(x)dx, (a S oc ^ b). 
a 

Since /x(x) is positive and continuous, a(x) will be monotonie in­
creasing, and it will satisfy (10) in view of the analogous condi­
tion on fx(x). 
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Conversely, if a point ü admits a representation (9) with a(x) 
monotonie increasing and satisfying (10), then it must be an in­
ner point of the convex extension. For if it were a boundary 
point there would pass through it a supporting plane 

n 

X) Cj(uj — üj) = 0 

such that 
n 

F(x) = ]C c3'(fAx) — üj) ^ 0, (a S x ^ b), 

the inequality certainly holding for at least one value of x since 
the arc cannot lie in the supporting {n — l)-flat. If now we con­
sider the Stieltjes integral of F(x)da(x), a simple argument 
based on the properties of F(x) and a(x) leads to the contra­
dictory conclusions that this integral must be both positive and 
zero. The contradiction completes the proof of the theorem. 

We interpreted the first Carathéodory property of the con­
vex extension in terms of linear inequalities. The second prop­
erty admits an even more obvious interpretation in terms of 
linear equations. From our discussion the following conclusions 
result.* 

THEOREM 7. A necessary and sufficient condition that the system 
of n linear homogeneous equations in m unknowns 

m 

(12) 2></M< = 0, (j = 1, 2, . - • , » ) , 
t= i 

admit a non-negative (and non-trivial) solution (/xi, fa, • • • , Mm) is 
that, in an n-dimensional euclidean space containing the set oj 
points 

2ft: (aih ai2, • • • , ain), (i = 1, 2, • • • , m)9 

the origin shall belong to the convex extension of that set. If the set of 
points 2JÎ is truly n-dimensional, a necessary and sufficient condi­
tion that the system (12) admit a positive solution (/xi, /x2, • • • , ixm) 
is that the origin be an inner point of the convex extension of 30Î. 

* For simplicity we limit our statements to the special case of homogeneous 
equations. The alterations to be made in the non-homogeneous case will be 
obvious. 
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THEOREM 8. A necessary and sufficient condition that the sys­
tem of Stieltjes integral equations 

(13) f f3{x)da{x) = 0, 0' = 1, 2, • • • , ») , 
J a 

in which the f unctions f j{x) are continuous, admit a monotonie non-
decreasing {and non-trivial) solution a{x) is that the origin belong 
to the convex extension of the arc 

«1 = / i f » , ^2 = /2<», • • • , « » = ƒ„(*), {a S x ^ b). 

If this arc does not lie in an {n—l)-flat, a necessary and sufficient 
condition that the system (13) admit a monotonie increasing solu­
tion a{x) is that the origin be an inner point of the convex extension. 

A nd this last condition is also necessary and sufficient for the 
existence of a positive continuous solution fi{x) of the system of in­
tegral equations 

I fj(x)n(x)dx = 0, (j = 1, 2, • • • , n). 
J a 

In our discussion we have noted analytic interpretations of 
each of Carathéodory's two characteristic properties of the con­
vex extension. The equivalence of these two properties of course 
implies the logical equivalence of the analytic interpretations. 
Each instance of such equivalence yields a purely analytic theo­
rem. Let us note a few. 

THEOREM 9. A necessary and sufficient condition that the system 
of linear inequalities 

n 

X) aijXj > 0, {i = 1, 2, • • • , tn), 

admit a solution (#1, #2, • • • , xn) is that the adjoint system of linear 
equations 

m 

(14) 2-««y< = o, (j = 1,2, • • • , » ) , 

admit no non-negative solution {yïf y2, • • • , ym) other than the 
trivial zero solution. 

A necessary and sufficient condition that the system 
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n 

Yl aaxi = O, (i = 1, 2, • • • , w), 
y=i 

admit a solution (xi, x%, • • • , #n) which does not annul all the left 
members, w tóa/ /&e adjoint system of linear equations (14) admit 
no positive solution (yif y2, • • • , 3>m). 

These two results were first stated by me in approximately 
this form in a note in the Annals of Mathematics in 1926. How­
ever, W. B. Carver had essentially obtained the first in a paper 
in the Annals of 1922. And, unfortunately unknown to either 
of us, Stiemke had obtained the essence of both in the Mathe­
matische Annalen of 1915. All of the purely analytic proofs were 
quite complicated. 

From our results concerning the convex extension of a con­
tinuous arc we draw the following conclusions. 

THEOREM 10. If the n functions f){x) are continuous and line­
arly independent on the interval (a^x^b), a necessary and suffi­
cient condition that the system of Stieltjes integral equations 

(15) f Mx)M*) = 0 , (7 = 1, 2, •• • , » ) , 
J a 

admit a monotonie non-decreasing solution a(x) {other than a con­
stant) is that every linear combination 

(i6) è Cifj(x) 

shall vanish somewhere on the interval (a^x^b). 
A necessary and sufficient condition that the system (15) admit 

a monotonie increasing solution a(x) is that every linear combina­
tion (16) shall change sign on (a^x^b). 

The last condition is likewise necessary and sufficient for the 
existence of a positive continuous solution fi(x) of the system 

I fj{x)n(x)dx = 0, (j = 1, 2, • • • , n). 
J a 

The third part of this theorem I stated and proved in the 
Transactions of 1928, by what now appears to be a very cumber­
some method. It was obtained by the present simple argument 
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by Schoenberg in the Bulletin of 1933. This type of argument 
seems first to have been applied to problems of this sort by 
Kakeya and Fujiwara in various papers in the Japanese journals 
between 1914 and 1930, though unfortunately some inaccuracies 
mar their results. 

The theorems which we have just obtained may perhaps be 
described in a general way as matrix-free theorems concerning 
adjoint systems of linear conditions. Two adjoint systems arise 
from the same matrix. The properties of the matrix determine 
the nature of the solutions of each system. But once the charac­
terization has been established, the matrix may be eliminated 
from consideration, and there results a relationship between the 
natures of the solutions of the adjoint systems. 

In our study, the matrix has been interpreted as a set of 
points and we have been interested in the relationship of its 
convex extension to the origin of coordinates. Through the two 
Carathéodory properties this relationship is translated into 
equivalent properties of the two adjoint linear systems. 

Of course the methods and results we have described invite 
extension and generalization in various directions. We have seen 
that no particular difficulty is presented by the number of con­
ditions in one of the adjoint systems, the one associated with the 
number of points in the set 9JÎ. However, such is not the case 
with the other system, in which the number of conditions coin­
cides with the dimensionality n of the euclidean space U. Spe­
cial instances in which the number of conditions in this system 
is infinite have been considered by F. Riesz, Schoenberg, McCoy, 
and myself. But a most tempting generalization would be a 
theory of the convex extension of a set of points in a space more 
general than the ordinary euclidean n-space. Contributions in 
this direction have been made by H. Kneser and Steinitz for 
a projective space, Keller for Hubert space, Ascoli and Mazur 
for general linear spaces, Menger for general metric spaces, and 
Whitehead for the geometry of paths. But time does not permit 
a consideration of any of these on this occasion. I must close by 
thanking you most sincerely for the privilege of addressing you, 
and for your courteous attention. 

CARNEGIE INSTITUTE OF TECHNOLOGY 


