THE FORM $w x+x y+y z+z u$

BY E. T. BELL

1. Introduction. In the usual notation,

$$
N \equiv N[n=w x+x y+y z+z u ; \quad w, x, z, u>0 ; \quad y \geqq 0]
$$

denotes the number of sets (w, x, y, z, u) of integers, subject to the conditions indicated, satisfying the stated equation in which n is an arbitrary constant integer >0. Let $\zeta_{r}(n)$ denote the sum of the r th powers of all the divisors of n, so that $\zeta_{0}(n)$ is the number of divisors. Then

$$
\begin{equation*}
N=\zeta_{2}(n)-n \zeta_{0}(n) \tag{1}
\end{equation*}
$$

This curious result is the only one of the numerous theorems on quadratic forms stated by Liouville for which (apparently) no proof has been published.*

We shall first show that (1) follows from

$$
\begin{equation*}
2 N^{\prime}=\zeta_{2}(n)-2 n \zeta_{0}(n)+\zeta_{1}(n) \tag{2}
\end{equation*}
$$

$N^{\prime} \equiv N^{\prime}[n=w x+x y+y z+z u+u x ; \quad w, x, y, z>0 ; \quad u \geqq 0]$, and then prove (2). Another similar result is stated in $\S 5$.
2. Equivalence of (1) and (2). The form in N^{\prime} may be written

$$
y z+(z+x) u+x(w+y)
$$

and hence, by the conditions on the variables, $w+y \equiv y^{\prime}>y$. Thus (2) is equivalent to

$$
\begin{align*}
& \zeta_{2}(n)-2 n \zeta_{0}(n)+\zeta_{1}(n) \\
& \quad=2 N^{\prime}[n=y z+(z+x) u+x w ; x, y, z, w>0 ; u \geqq 0 ; w>y] \tag{3}
\end{align*}
$$

Applying the substitution $(x z)(y w)$ to the last we see that (3) holds also when the condition $w>y$ is replaced by $w<y$.

Consider now the remaining possibility, $w=y$. The equation becomes

[^0]\[

$$
\begin{equation*}
n=(x+z)(y+u) ; \quad x, y, z>0 ; \quad u \geqq 0 \tag{4}
\end{equation*}
$$

\]

Hence if $n=d \delta$ is any resolution of n into a pair of positive divisors, the number of solutions of (4) for a fixed (d, δ) is

$$
N[d=x+z ; x, z>0] \times N[\delta=y+u ; y>0 ; u \geqq 0]
$$

that is, $(d-1) \delta$; and therefore the total number of solutions of (4) is $\sum(d-1) \delta$, the sum referring to all pairs (d, δ). Thus (4) has precisely $n \zeta_{0}(n)-\zeta_{1}(n)$ solutions.

But all the solutions of

$$
\begin{equation*}
n=y z+(z+x) u+x w ; \quad x, y, z, w>0 ; \quad u \geqq 0 \tag{5}
\end{equation*}
$$

are exhausted by the three mutually exclusive sets in which $w>y, w<y, w=y$, respectively, and the number of solutions in each of these has just been determined. The total number of solutions of (5) is thus

$$
\zeta_{2}(n)-2 n \zeta_{0}(n)+\zeta_{1}(n)+n \zeta_{0}(n)-\zeta_{1}(n),
$$

or $\zeta_{2}(n)-n \zeta_{0}(n)$. Hence (1) follows from (2). Conversely, by reversing the steps, (2) follows from (1), so that (1), (2) are equivalent.
3. Dependence of (2) on an Auxiliary Relation (6). Let $\phi(u, v)$ be finite and single-valued for all integer values of the variables u, v, and beyond the condition $\phi(u, v)=-\phi(v, u)$ for integer values of u, v, let $\phi(u, v)$ be arbitrary. Then

$$
\begin{equation*}
\sum \phi(w+y, z)=\sum\left[\sum_{r=1}^{\delta-1} \phi(r, d)\right] \tag{6}
\end{equation*}
$$

\sum on the left referring to all (w, y, z), that on the right to all (d, δ), from

$$
\begin{equation*}
d \delta=n=w x+x y+y z ; \quad d, \delta, w, x, y, z>0 \tag{7}
\end{equation*}
$$

in which all the letters denote integers and n is constant. Assuming this for the moment, we shall prove (2).

The form in (7) is invariant under the substitution $(x y)(z w)$. Hence $\sum w=\sum z$, the sums extending over all solutions of (7). Taking $\phi(u, v) \equiv u-v$ in (6), we get

$$
\begin{equation*}
2 \sum y=\zeta_{2}(n)-2 n \zeta_{0}(n)+\zeta_{1}(n) \tag{8}
\end{equation*}
$$

the left member of which is

$$
2 \sum N\left[y=y_{1}+y_{2} ; \quad y_{1}>0 ; \quad y_{2} \geqq 0\right] .
$$

It follows that

$$
2 N\left[n=w x+(x+z)\left(y_{1}+y_{2}\right) ; \quad w, x, z, y_{1}>0 ; y_{2} \geqq 0\right]
$$

is given by the right member of (8). By a change of notation for the variables this result is (2).
4. Proof of (6). We now prove (6). The functions $h(u), f(u, v)$ are single-valued and finite for integer values of the variables, and beyond the conditions (for integer values of u, or of u, v)

$$
h(u)=h(-u), \quad f(u, v)=f(-u, v)=f(u,-v),
$$

are arbitrary. Hence in a theorem concerning $f(u, v)$ we may replace $f(u, v)-f(v, u)$ by $\phi(h(u), h(v))$, where ϕ is as in $\S 3$. For f we have the identity*

$$
\begin{aligned}
\sum & {\left[f\left(d_{1}+d_{2}, \delta_{1}-\delta_{2}\right)-f\left(\delta_{1}-\delta_{2}, d_{1}+d_{2}\right)\right] } \\
& =\sum\left[(d-1)\{f(d, 0)-f(0, d)\}+2 \sum_{r=1}^{\delta-1}\{f(r, d)-f(d, r)\}\right]
\end{aligned}
$$

the sum on the right referring to all (d, δ), that on the left to all ($d_{1}, \delta_{1}, d_{2}, \delta_{2}$), such that

$$
\begin{equation*}
d \delta=n=d_{1} \delta_{1}+d_{2} \delta_{2} \tag{9}
\end{equation*}
$$

in which all letters denote integers >0 and n is constant. Hence

$$
\begin{align*}
\sum & \phi\left(h\left(d_{1}+d_{2}\right), h\left(\delta_{1}-\delta_{2}\right)\right) \\
& =\sum\left[(d-1) \phi(h(d), h(0))+2 \sum_{r=1}^{\delta-1} \phi(h(r), h(d))\right] . \tag{10}
\end{align*}
$$

In (10) take $h(u) \equiv|u|$. Then

$$
\begin{align*}
& \sum \phi\left(d_{1}+d_{2},\left|\delta_{1}-\delta_{2}\right|\right) \\
& \quad=\sum\left[(d-1) \phi(d, 0)+2 \sum_{r=1}^{\delta-1} \phi(r, d)\right] \tag{11}
\end{align*}
$$

[^1]According as $\delta_{1}-\delta_{2}>0, \delta_{1}-\delta_{2}<0, \delta_{1}-\delta_{2}=0$ we have

$$
\begin{array}{ll}
\delta_{1}=\delta_{2}+\delta_{1}^{\prime}, \delta_{1}^{\prime}>0, & n=d_{1}\left(\delta_{2}+\delta_{1}^{\prime}\right)+d_{2} \delta_{2} ; \\
\delta_{2}=\delta_{1}+\delta_{2}^{\prime}, \delta_{2}^{\prime}>0, & n=d_{1} \delta_{1}+d_{2}\left(\delta_{1}+\delta_{2}^{\prime}\right) ; \\
& n=\delta_{1}\left(d_{1}+d_{2}\right) .
\end{array}
$$

The third of these contributes $\sum(d-1) \phi(d, 0)$, summed over all divisors d of n, to the left of (11). The forms in the first two are equivalent under the substitution $\left(d_{1} d_{2}\right)\left(\delta_{1} \delta_{2}\right)\left(\delta_{1}^{\prime} \delta_{2}^{\prime}\right)$; for the first, $\left|\delta_{1}-\delta_{2}\right|=\delta_{1}^{\prime}$, for the second $\left|\delta_{1}-\delta_{2}\right|=\delta_{2}^{\prime}$. Hence, by the equivalence just noted, these two together contribute $2 \sum \phi\left(d_{1}+d_{2}, \delta_{1}^{\prime}\right)$ to the left of (11). Substituting these results into (9), (11), and changing the notation,

$$
\left(d_{2}, \delta_{2}, d_{1}, \delta_{1}^{\prime}\right)=(w, x, y, z)
$$

we get (6).
5. Another Similar Result. Other choices of ϕ in (6) give theorems on numbers of representations. From the results already given it is easily seen that

$$
N[n=w x+x y+y z+z u+u x ; x, y>0 ; u, z, w \geqq 0]=\zeta_{2}(n) .
$$

To prove this we require

$$
2 N[n=x(w+y+u) ; \quad x, y, w>0 ; \quad u \geqq 0]=\zeta_{2}(n)-\zeta_{1}(n),
$$

which follows at once on noting that $x=d, w+y+u=\delta$, where $n=d \delta$, and that

$$
N[\delta=w+y+u ; \quad w, y>0 ; \quad u \geqq 0]
$$

is the coefficient of q^{δ} in the expansion of $q^{2}(1-q)^{-3}$, and hence is $\delta(\delta-1) / 2$.

California Institute of Technology

[^0]: * J. Liouville, Comptes Rendus, Paris, vol. 62 (1866), p. 714; also, Journal de Mathématiques, (2), vol. 12 (1867), pp. 47-48. Noted in Dickson's History, vol. 3, p. 237. Liouville points out why the theorem is unusual.

[^1]: * Equivalent to one stated by Liouville, Journal de Mathématiques, (2), vol. 3 (1858), pp. 282-284. The first proof, by elementary means, was given by T. Pepin, ibid., (4), vol. 4 (1888), pp. 84-92; I showed that the identity is equivalent to one between doubly periodic functions of the first and second kinds (Transactions of this Society, vol. 22 (1921), p. 215).

