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ON POINCARÉ'S R E C U R R E N C E THEOREM 

BY CORNELIS VISSER 

1. Introduction. Let 5 be a space in which is defined a meas
ure fJL such that fx(S) — 1. Suppose we are given a one parameter 
group of one to one transformations Tt, (— oo< ;<oo) , of S 
into itself, with the properties: 

(1) TsTt = Tt+S. 

(2) For any measurable set E and any / the set TtE is meas
urable and fi(TtE) =/x(£). 

The following extension of Poincaré's recurrence theorem was 
proved by Khintchine.* 

For any measurable E and any X < 1, 

for a set of values t that is relatively dense on the t axis. 
In this paper we give an elementary proof of this statement. 

2. An Auxiliary Theorem. We prove the following theorem 
from which the recurrence theorem is an immediate conse
quence and which is also interesting in itself. 

Let S be a space with a measure fi such that JJL(S) — 1 and let 
Ely Ei, • • • be an infinite sequence of measurable sets in 5, all 
having a measure not less than m. Then for any X < 1 there exist 
in the sequence two sets Ei and Ek such that 

lx(EiEh) â \m\ 

Let us suppose that /*(£*£*) <p for any i and k. If we put 

F\ = Ei, F 2 = E2 —• E%Fi, F s — Ez — E2F2 ~~ E3F1, 

• • • , Fn = En — EnFn-l — • • • — jEnFi, 

no two of the sets F have common points and F» is part of Ei. 
Therefore 

l*(Fi) è m, /*(Fa) > m - p, /*(F8) > m - lp, 

- • • , M(f») >m- {n- l)j>, 

* A. Khintchine, Eine Verscharfung des Poincaréschen " Wieder kehrsatzes," 
Compositio Mathematica, vol. 1 (1934), pp. 177-179. 
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and thus for n = 1, 2, • • • , 

1 
lx{F1 + • • • + Fn) = IIFX + • • • + ixFn ^nni-—n(n- l)p. 

It follows that 

1 
1 = M(5) ^ iX(F1 + • • • + Fn) ^ nm n(n - l)p. 

We now choose n such that 

m 

P 

Then we obtain 

1 

or 

P 

Hence, if we exclude the trivial case m = l, 

1 
p > — m 2 . 

3 
From this it follows that there must be two sets Ei and Ek with 

1 
lx(EiEk) ^—m\ 

We shall now prove that the factor 1/3 may be replaced by an 
arbitrary X < 1 . We consider the product space Sn, formed by 
the systems (x\, • • « , xn) of n points in S, and in this product 
space the sequence of sets E?, E2

n, • • • . In Sn we can define a 
measure /Z such that the product of n measurable sets of S is 
measurable and has a measure that equals the product of the 
measures of its components. In applying the result we just ob-

m 
<n^ h i . 
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tained to Sn and the sequence Ex
n, E2

n, • • • , we find two sets 
Ein and Ek

n such that 

1 
ll(E?Ek

n) ^ — {mn)\ 
0 

Now 

fi(E?Ek») = pUEiEt)») = (ju(£*£*))n, 

and consequently 

or 

/ l V /n 

/*(£<£*) ^ ( y ) w2-

Given X < 1 , we can always define w such that ( l /3) 1 / w^X and 
then select the pair Ei} Ek. This proves the theorem. 

3. Proof of the Recurrence Theorem. Assume the contrary: 
There is a measurable set E and a number X < 1 such that 

(*) KE-TtE)<UKE)y 

on arbitrarily large /-intervals. Let I\ be a closed interval on 
which (*) holds; denote by 2l\ its length and by h its center. 
There is an interval I2 on which (*) holds and which has a length 
> 2 ( / i + I h\ )• Denote by /3 the center of 1% and by 73 an interval 
on which (*) holds and which has a length >2(Zi+ | / 2 | + | ^ | ) , 
and so forth. Then the numbers lk — h, (i<k), belong to the 
intervals /&_»; hence for any i and k, (i<k), 

rtE-Ti^E) <X(M(£))2 , 

and consequently 

n(TtiE-TltE) < X ( M ( £ ) ) 2 

in contradiction to the theorem of §2, applied to the sequence 
TixE, Ti2E, • • • . This proves the recurrence theorem. 

It will be seen that it is not essential that t in Tt is a continu
ous parameter. The same method gives the same result in the 
case that / only runs through the values 0, ± 1, ± 2, • • • . 
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4. Remark. Let the sequence E±, £2 , • • • be as in §2. Then we 
can even assert that f or every X<1 there exists an infinite subse
quence Eiv Ei2, • • • such that for every p and a 

»(EipEiq) ^ Am2. 

We show first that there exists an infinite subsequence 
Ekv Ek2, - • • such that /Jt(Ekv Ekp) ^\m2 for every p. Suppose 
that no such subsequence exists; then to every w = l, 2, • • • 
belongs a pn such that 

fx(EnEm) < Am2 for m ^ n + pn. 

Writing Wi=l, n<L — n\-\-pnv ns = n2-\rpn2i • • • , we have then for 
every i and k, 

lx(En.Enk) < Aw2, 

which contradicts the theorem of §2. The proof is now easily 
completed by applying the diagonal principle. 

CAMBRIDGE, MASSACHUSETTS 

ON T H E ZEROS OF T H E DERIVATIVE OF A 
RATIONAL FUNCTION* 

BY MORRIS MARDEN 

1. Introduction. The primary object of this note is to give a 
simple solution of a problem already discussed by many authors 
including the present one. f It is the problem of determining the 
regions within which lie the zeros of the derivative of a rational 
function when the zeros and poles of the function lie in pre
scribed circular regions. 

THEOREM l .J Forj = Q, 1, • • • , p let r^ and a3- be real constants 

* Presented to the Society, September 4, 1934. 
f For an expository account and list of references see M. Marden, American 

Mathematical Monthly, vol. 42 (1935), pp. 277-286, hereafter referred to as 
Marden I. 

Î See M. Marden, Transactions of this Society, vol. 32 (1930), pp. 81-109, 
hereafter referred to as Marden I I . 


