4. Remark. Let the sequence E_{1}, E_{2}, \cdots be as in $\S 2$. Then we can even assert that for every $\lambda<1$ there exists an infinite subsequence $E_{i_{1}}, E_{i_{2}}, \cdots$ such that for every p and q

$$
\mu\left(E_{i_{p}} E_{i_{q}}\right) \geqq \lambda m^{2}
$$

We show first that there exists an infinite subsequence $E_{k_{1}}, E_{k_{2}}, \cdots$ such that $\mu\left(E_{k_{1}}, E_{k_{p}}\right) \geqq \lambda m^{2}$ for every p. Suppose that no such subsequence exists; then to every $n=1,2, \cdots$ belongs a p_{n} such that

$$
\mu\left(E_{n} E_{m}\right)<\lambda m^{2} \quad \text { for } \quad m \geqq n+p_{n} .
$$

Writing $n_{1}=1, n_{2}=n_{1}+p_{n_{1}}, n_{3}=n_{2}+p_{n_{2}}, \cdots$, we have then for every i and k,

$$
\mu\left(E_{n_{i}} E_{n_{k}}\right)<\lambda m^{2},
$$

which contradicts the theorem of $\S 2$. The proof is now easily completed by applying the diagonal principle.

Cambridge, Massachusetts

ON THE ZEROS OF THE DERIVATIVE OF A RATIONAL FUNCTION*

BY MORRIS MARDEN

1. Introduction. The primary object of this note is to give a simple solution of a problem already discussed by many authors including the present one. \dagger It is the problem of determining the regions within which lie the zeros of the derivative of a rational function when the zeros and poles of the function lie in prescribed circular regions.

Theorem $1 . \ddagger$ For $j=0,1, \cdots, p$ let r_{j} and σ_{j} be real constants

[^0]with $\sigma_{j}{ }^{2}=1$; let Z_{j} denote the circular region defined by the inequality
$$
\sigma_{j} Z_{j}(z) \equiv \sigma_{j}\left(\left|z-\alpha_{j}\right|^{2}-r_{j}^{2}\right) \leqq 0
$$
and let z_{j} be an arbitrary point of the region Z_{j}. Then every zero of the derivative of the function*
$$
f(z)=\prod_{j=0}^{p}\left(z-z_{j}\right)^{m_{j}}
$$
satisfies at least one of the $p+2$ inequalities
\[

$$
\begin{array}{r}
\sigma_{j} Z_{j}(z) \leqq 0, \quad(j=0,1, \cdots, p) \\
\frac{Z(z)}{\prod_{\substack{j=0}}^{j=p} Z_{j}(z)} \equiv\left|\sum_{j=0}^{p} \frac{m_{j}\left(\bar{\alpha}_{j}-\bar{z}\right)}{Z_{j}(z)}\right|^{2}-\left(\sum_{j=0}^{p} \frac{\left|m_{j}\right| \sigma_{j} r_{j}}{Z_{j}(z)}\right)^{2} \leqq 0 \tag{2}
\end{array}
$$
\]

Theorem 1 holds even when the m_{j} are complex numbers. When, however, they are all real, the use of the identities

$$
\begin{aligned}
&\left(\alpha_{j}-z\right)\left(\bar{\alpha}_{k}-\bar{z}\right)+\left(\bar{\alpha}_{j}-\bar{z}\right)\left(\alpha_{k}-z\right) \\
&=\left|\alpha_{j}-z\right|^{2}+\left|\alpha_{k}-z\right|^{2}-\left|\alpha_{j}-\alpha_{k}\right|^{2}
\end{aligned}
$$

and

$$
\left|\alpha_{j}-z\right|^{2}=Z_{j}(z)+r_{j}^{2}
$$

enables one, after expanding (2), to write

$$
\begin{equation*}
\frac{Z(z)}{\prod_{j=0}^{j=p} Z_{j}(z)} \equiv \sum_{j=0}^{p} \frac{n m_{j}}{Z_{j}(z)}-\sum_{j=0}^{p} \sum_{k=j+1}^{p} \frac{m_{j} m_{k} \tau_{j k}}{Z_{i}(z) Z_{k}(z)} \tag{3}
\end{equation*}
$$

where $n=\sum m_{j}$ and

$$
\tau_{j k}=\left|\alpha_{j}-\alpha_{k}\right|^{2}-\left(\left|m_{j}\right| m_{j}^{-1} \sigma_{j} r_{j}-\left|m_{k}\right| m_{k}^{-1} \sigma_{k} r_{k}\right)^{2} .
$$

The latter is the square of the common external or internal tangent of the circles $Z_{j}(z)=0$ and $Z_{k}(z)=0$ according as the product $\left|m_{j} m_{k}\right|\left(m_{j} m_{k}\right)^{-1} \sigma_{j} \sigma_{k}$ is positive or negative. The equation $Z(z)=0$ represents for $n \neq 0$ a p-circular $2 p$-ic and for $n=0$ in general a $(p-1)$-circular $2(p-1)$-ic curve. The properties of these curves are studied in Marden II, p. 92.

[^1]2. Three Lemmas.* (I). If the points $t_{0}, t_{1}, \cdots, t_{p}$ varying independently of one another describe the closed interiors of the circles $T_{0}, T_{1}, \cdots, T_{p}$, respectively, the center and radius of T_{j} being γ_{j} and ρ_{j}, then the point $w=\sum_{j=0}^{p} m_{j} t_{j}$ describes the closed interior of a circle W with center at $\gamma=\sum_{j=0}^{\bar{p}} m_{j} \gamma_{j}$ and radius of $\rho=\sum_{j=0}^{p}\left|m_{j}\right| \rho_{j}$.

For

$$
|w-\gamma|=\left|\sum_{j=0}^{p} m_{j}\left(t_{j}-\gamma_{j}\right)\right| \leqq \rho ;
$$

conversely, if k and θ are arbitrary, $0 \leqq k \leqq 1$, and if $m_{j}\left(t_{j}-\gamma_{j}\right)$ $=k\left|m_{j}\right| \rho_{j} e^{i \theta}$, then $w-\gamma=\sum k\left|m_{j}\right| \rho_{j} e^{i \theta}=k \rho e^{i \theta}$.
(II). If the points $t_{j},(j \geqq 1)$, vary as in Lemma (I), but the point t_{0} describes the closed exterior of its circle T_{0}, the locus of the point w is the closed exterior of a circle with center at $\gamma=\sum_{j=0}^{p} m_{j} \gamma_{j}$ and radius $\rho=2\left|m_{0}\right| \rho_{0}-\sum_{j=0}^{p}\left|m_{j}\right| \rho_{j}$ provided $\rho>0$, and $i=0$ the entire plane if $\rho \leqq 0$.

For, when $\rho>0$,

$$
|w-\gamma| \geqq\left|m_{0}\left(t_{0}-\gamma_{0}\right)\right|-\left|\sum_{j=1}^{p} m_{i}\left(t_{j}-\gamma_{j}\right)\right| \geqq \rho ;
$$

conversely, if k and θ are arbitrary with $k \geqq 1$, and if

$$
m_{0}\left(t_{0}-\gamma_{0}\right)=\left[\left|m_{0}\right| \rho_{0}+(k-1) \rho\right] e^{i \theta}
$$

and

$$
m_{j}\left(t_{j}-\gamma_{j}\right)=-\left|m_{j}\right| \rho_{j} e^{i \theta}, \quad(j \geqq 1),
$$

then $w-\gamma=k \rho e^{i \theta}$.
If ρ_{0} decreases while $\rho_{j},(j \geqq 1)$, remain constant, ρ will approach zero and the locus of w will become the entire plane. The locus is, therefore, the entire plane for $\rho \leqq 0$.
(III). If the points $t_{j},(j>k \geqq 1)$, vary as in Lemma (I), but the points $t_{j},(j \leqq k)$, describe the exteriors of their circles T_{j}, the locus W of w is the entire plane.

For, if each $t_{j},(1 \leqq j \leqq k)$, were to vary merely interior to a

[^2]circle T_{j}^{\prime} drawn exterior to but not enclosing the circle T_{j} while the remaining t_{j} vary as indicated in Lemma (III), and if the radius ρ_{j}^{\prime} of T_{j}^{\prime} were chosen so that
$$
\left|m_{0}\right| \rho_{0}-\sum_{j=1}^{k}\left|m_{j}\right| \rho_{j}^{\prime}-\sum_{j=k+1}^{p}\left|m_{j}\right| \rho_{j}=0
$$
then by Lemma (II) the locus of w would be the entire plane.
3. Proof of Theorem 1. Let z be any fixed point exterior to all the regions Z_{j}; that is, let z be such that $\sigma_{j} Z_{j}(z)>0$, all j. Since $\sigma_{j} Z_{j}\left(z_{j}\right) \leqq 0$, point $t_{j}=\left(z_{j}-z\right)^{-1}$ lies in or on the circle T_{j} with center $\gamma_{j}=\left(\bar{\alpha}_{j}-\bar{z}\right) / Z_{j}(z)$ and radius $\rho_{j}=\left(\sigma_{j} \gamma_{j}\right) / Z_{j}(z)$. According to Lemma (I), the locus W_{z} of the point $w=\sum m_{j} t_{j}$ will be defined by the inequality:
\[

$$
\begin{equation*}
\left|w-\sum_{j=0}^{p} \frac{m_{j}\left(\bar{\alpha}_{j}-\bar{z}\right)}{Z_{j}(z)}\right|^{2}-\left(\sum_{j=0}^{p} \frac{\left|m_{j}\right| \sigma_{j} r_{j}}{Z_{j}(z)}\right)^{2} \leqq 0 \tag{4}
\end{equation*}
$$

\]

Now, in order to be a zero of $f^{\prime}(z)$, point z must be a root of the equation

$$
\begin{equation*}
-\frac{f^{\prime}(z)}{f(z)}=\sum_{j=0}^{p} \frac{m_{j}}{z_{j}-z}=0 \tag{5}
\end{equation*}
$$

that is, point $w=0$ must satisfy inequality (4). Hence, any zero of $f^{\prime}(z)$, not satisfying any of the inequalities (1), must satisfy (2); that is to say, $\sigma Z(z) \leqq 0$, where $\sigma=\Pi \sigma_{j}$.
4. A Locus Problem. What then is the locus Z of the zeros of $f^{\prime}(z) / f(z)$ when the points z_{j} vary independently within their circular regions Z_{j} ?

Theorem 1 reveals that $\sigma Z(z) \leqq 0$ for any point z of locus Z exterior to all the regions Z_{j}. Conversely, if exterior to all the regions Z_{j}, any point z for which $\sigma Z(z) \leqq 0$ belongs to the locus Z. With the aid of Lemma (II), it can be shown that a point z interior to just one region Z_{j} belongs to locus Z if and only if either $\sigma Z(z) \leqq 0$ or $\sigma S(z) \leqq 0$, where

$$
\frac{S(z)}{\prod Z_{j}(z)}=\sum_{j=0}^{p} \frac{\left|m_{j}\right| r_{j} \sigma_{j}}{Z_{j}(z)}
$$

(The curve $S(z)=0$, in general a p-circular $2 p$-ic, consists only of points on the boundaries of two or more regions Z_{j} or interior
to at least one region Z_{j}, the points z interior to just one region Z_{j} satisfying inequality $\sigma Z(z) \leqq 0$.) Likewise, with the aid of Lemma (III), it can be shown that every point common to two or more regions Z_{j} belongs to locus Z.

If a given point z is to be on the boundary of locus Z, point $w=0$ must cease to be a point of W_{z} whenever the regions Z_{j} and hence W_{z} are diminished, no matter how slightly. That is to say, the point $w=0$ must be on the boundary of the locus W_{z}. This implies that $Z(z)=0$ if z, a boundary point of locus Z, is exterior to all the regions Z_{j} or interior to just one region Z_{j} with $\sigma Z(z) \leqq 0$. It also implies that no boundary point z of locus Z may be either interior to just one region Z_{j} with $\sigma S(z) \leqq 0$, or interior to two or more regions Z_{j}; for, in those cases, the locus W_{z} is the entire plane.

In short, the locus Z is a set of regions bounded by the ovals of the curve $Z(z)=0$, each region, according to Marden II, being simply-connected.
5. Applications. When $p=2$ and $n=m_{0}+m_{1}+m_{2}=0$, equation (5) may be written as the cross-ratio

$$
\begin{equation*}
\left(z_{0} z_{1} z_{2} z\right) \equiv \frac{\left(z_{0}-z_{2}\right)\left(z_{1}-z\right)}{\left(z_{0}-z\right)\left(z_{1}-z_{2}\right)}=-\frac{m_{1}}{m_{0}} \tag{6}
\end{equation*}
$$

Here

$$
\begin{aligned}
& Z(z) \equiv-m_{0} m_{1} \tau_{01} Z_{2}(z)-m_{1} m_{2} \tau_{12} Z_{0}(z)-m_{2} m_{0} \tau_{20} Z_{1}(z)=0, \\
& \begin{aligned}
S(z) \equiv\left|m_{0}\right| r_{0} \sigma_{0} Z_{1}(z) Z_{2}(z) & +\left|m_{1}\right| r_{1} \sigma_{1} Z_{2}(z) Z_{0}(z) \\
& +\left|m_{2}\right| r_{2} \sigma_{2} Z_{0}(z) Z_{1}(z)=0,
\end{aligned}
\end{aligned}
$$

represent in general a circle and bicircular quartic, respectively. If λ denotes the coefficient of the term $\left(x^{2}+y^{2}\right)$ in the expression $Z(z)$, the region $\sigma Z(z) \leqq 0$ is the interior or exterior of the circle $Z(z)=0$ according as $\sigma \lambda>0$ or $\sigma \lambda<0$. Hence, if all the points for which $\sigma S(z) \leqq 0$ lie in the region $\sigma Z(z) \leqq 0$, the locus Z will be the interior or exterior of circle $Z(z)=0$ according as $\sigma \lambda>0$ or $\sigma \lambda<0$. If, however, not all the points for which $\sigma S(z) \leqq 0$ lie in the region $\sigma Z(z) \leqq 0$, the locus will be the entire plane. This discussion verifies the following theorem due to Walsh.*

[^3]If the points z_{0}, z_{1}, and z_{2} varying independently of one another describe given circular regions Z_{0}, Z_{1}, and Z_{2}, then the point z defined by the constant cross-ratio $\left(z_{0} z_{1} z_{2} z\right)=c$ also describes a circular region Z.

On allowing a number of the regions Z_{j} to coincide, we deduce from Theorem 1 the following corollary.

Corollary 1. If all the zeros of a polynomial $f_{j}(z)$ of degree n_{j} lie in the circular region Z_{j}, then every zero of the derivative of the product

$$
\prod_{j=0}^{p}\left[f_{j}(z)\right]^{q_{j}}
$$

will satisfy at least one of the $p+2$ inequalities (1) and (2) with $m_{i}=n_{i} q_{j} . *$

In particular, upon setting $f_{j}(z)=f(z)-\gamma_{j}$, we obtain from Corollary 1 a generalization of a theorem stated by Jentsch and proved by Fekete. \dagger

Corollary 2. If all the points at which a given polynomial $f(z)$ takes on the value γ_{j} lie in the circular region Z_{j}, then every root z of the equation

$$
\sum_{j=0}^{p} \frac{m_{j}}{f(z)-\gamma_{j}}=0
$$

satisfies at least one of the $p+2$ inequalities (1) and (2).
6. Generalizations. By requiring $w=\lambda$ instead of $w=0$ to satisfy inequality (4), we are led to the following result.

Theorem 2. Under the hypotheses of Theorem 1 or of Corollary 1 , every zero of the function $f^{\prime}(z)+\lambda f(z)$ satisfies at least one of the $p+2$ inequalities

$$
\begin{array}{r}
\sigma_{j} Z_{j}(z) \leqq 0, \quad(j=0,1, \cdots, p), \\
\left|\lambda-\sum_{j=0}^{p} \frac{m_{j}\left(\bar{\alpha}_{i}-\bar{z}\right)}{Z_{j}(z)}\right|^{2}-\left(\sum_{j=0}^{p} \frac{\left|m_{i}\right| \sigma_{j} r_{j}}{Z_{j}(z)}\right)^{2} \leqq 0 \tag{8}
\end{array}
$$

[^4]If all the m_{j} are real, the left-hand side of (8) may be rewritten, with the aid of the identities given in $\S 1$, as

$$
\begin{equation*}
\sum_{j=0}^{p} \frac{|\lambda|{ }^{2} m_{j} \Gamma_{j}(z)}{n Z_{j}(z)}-\sum_{j=0}^{p} \sum_{k=j+1}^{p} \frac{m_{j} m_{k} \tau_{j k}}{Z_{j}(z) Z_{k}(z)}, \tag{9}
\end{equation*}
$$

where

$$
\Gamma_{j}(z) \equiv\left|z-\left(\alpha-n \lambda^{-1}\right)\right|^{2}-r_{j}^{2}
$$

The equation $\Gamma_{j}(z)=0$ represents the circle obtained by translating the circle $Z_{j}(z)=0$ in the direction and magnitude of the vector n / λ. Set equal to zero, expression (7) represents a $(p+1)$ circular $2(p+1)$-ic curve with singular foci at the roots of the equation

$$
\lambda+\sum_{j=0}^{p} \frac{m_{j}}{z-\alpha_{i}}=0
$$

In particular, assuming the hypotheses of Corollary 1, and setting $\sigma_{0}-1=p=p_{0}-1=0$, we find this curve to reduce to the circle $\Gamma_{0}(z)=0$. In other words, if all zeros of a polynomial $f(z)$ of degree n lie in a given circle, any zero of the linear combination $f^{\prime}(z)+\lambda f(z)$ will lie either in the given circle or in the one obtained by translating the given circle in the direction and magnitude of the vector $n \lambda^{-1}$.*

Finally, by requiring $w=g(z)$, an arbitrary function of z, instead of $w=0$, to satisfy inequality (4), we obtain a theorem similar to Theorem 2 for the zeros of the function $f^{\prime}(z)+g(z) f(z)$. For example, if $g(z)=\bar{z}$, and if all the zeros of a polynomial $f(z)$ of degree n lie in the circle $|z| \leqq r \leqq 2 n^{1 / 2}$, all zeros of the function $\bar{z} f(z)+f^{\prime}(z)$ lie in the same circle.

University of Wisconsin, Milwaukee Extension Center

[^5]
[^0]: * Presented to the Society, September 4, 1934.
 \dagger For an expository account and list of references see M. Marden, American Mathematical Monthly, vol. 42 (1935), pp. 277-286, hereafter referred to as Marden I.
 \ddagger See M. Marden, Transactions of this Society, vol. 32 (1930), pp. 81-109, hereafter referred to as Marden II.

[^1]: * Where no limits are indicated, a product or summation is to be taken from $j=0$ to $j=p$ and from $k=j+1$ to $k=p$.

[^2]: * See J. L. Walsh, Transactions of this Society, vol. 24 (1922), p. 61 and p. 169; also H. Minkowski, Collected Works, vol. 2, p. 177.

[^3]: * J. L. Walsh, Transactions of this Society, vol. 22 (1921), pp. 101-116, and Rendiconti di Palermo, vol. 46 (1922), pp. 1-13. See also A. B. Coble, this Bulletin, vol. 27 (1921), pp. 434-437; T. Nakahara, Tôhoku Mathematical Journal, vol. 23 (1924), p. 97; and Marden II.

[^4]: * This corollary contains as special cases a number of important theorems due to Gauss-Lucas, Laguerre, Bôcher, and Walsh. See Marden I.
 \dagger R. Jentsch, Archiv der Mathematik und Physik, vol. 25 (1917), p. 196, prob. 526; M. Fekete, Jahresbericht der Deutschen Mathematiker-Vereinigung, vol. 31 (1922), pp. 42-48; Polya-Szegö, Aufgaben und Lehrsätze aus der Analysis, vol. 2, p. 61, probs. 126-127.

[^5]: * See M. Fujiwara, Tôhoku Mathematical Journal, vol. 9 (1916), pp. 102108; T. Takagi, Proceedings of the Physico-Mathematical Society of Japan, vol. 3 (1921), pp. 175-179; J. L. Walsh, this Bulletin, vol. 30 (1924), p. 52.

