4. Remark. Let the sequence E_1, E_2, \cdots be as in §2. Then we can even assert that for every $\lambda < 1$ there exists an infinite subsequence E_{i_1}, E_{i_2}, \cdots such that for every p and q

$$\mu(E_{i_p}E_{i_q}) \geq \lambda m^2.$$

We show first that there exists an infinite subsequence E_{k_1}, E_{k_2}, \cdots such that $\mu(E_{k_1}, E_{k_p}) \ge \lambda m^2$ for every p. Suppose that no such subsequence exists; then to every $n = 1, 2, \cdots$ belongs a p_n such that

$$\mu(E_n E_m) < \lambda m^2 \quad \text{for} \quad m \ge n + p_n.$$

Writing $n_1 = 1$, $n_2 = n_1 + p_{n_1}$, $n_3 = n_2 + p_{n_2}$, \cdots , we have then for every *i* and *k*,

$$\mu(E_{n_i}E_{n_k}) < \lambda m^2,$$

which contradicts the theorem of §2. The proof is now easily completed by applying the diagonal principle.

CAMBRIDGE, MASSACHUSETTS

ON THE ZEROS OF THE DERIVATIVE OF A RATIONAL FUNCTION*

BY MORRIS MARDEN

1. Introduction. The primary object of this note is to give a simple solution of a problem already discussed by many authors including the present one.[†] It is the problem of determining the regions within which lie the zeros of the derivative of a rational function when the zeros and poles of the function lie in prescribed circular regions.

THEOREM 1.‡ For $j = 0, 1, \dots, p$ let r_j and σ_j be real constants

^{*} Presented to the Society, September 4, 1934.

[†] For an expository account and list of references see M. Marden, American Mathematical Monthly, vol. 42 (1935), pp. 277–286, hereafter referred to as Marden I.

[‡] See M. Marden, Transactions of this Society, vol. 32 (1930), pp. 81–109, hereafter referred to as Marden II.

with $\sigma_i^2 = 1$; let Z_i denote the circular region defined by the inequality

$$\sigma_j Z_j(z) \equiv \sigma_j(\left| z - \alpha_j \right|^2 - r_j^2) \leq 0,$$

and let z_i be an arbitrary point of the region Z_i . Then every zero of the derivative of the function^{*}

$$f(z) = \prod_{j=0}^{p} (z - z_j)^{m_j}$$

satisfies at least one of the p+2 inequalities

(1)
$$\sigma_j Z_j(z) \leq 0, \qquad (j = 0, 1, \cdots, p),$$

(2)
$$\frac{Z(z)}{\prod_{j=0}^{j=p} Z_j(z)} \equiv \left| \sum_{j=0}^p \frac{m_j(\bar{\alpha}_j - \bar{z})}{Z_j(z)} \right|^2 - \left(\sum_{j=0}^p \frac{\left| m_j \right| \sigma_j r_j}{Z_j(z)} \right)^2 \leq 0.$$

Theorem 1 holds even when the m_i are complex numbers. When, however, they are all real, the use of the identities

$$(\alpha_j - z)(\bar{\alpha}_k - \bar{z}) + (\bar{\alpha}_j - \bar{z})(\alpha_k - z) = |\alpha_j - z|^2 + |\alpha_k - z|^2 - |\alpha_j - \alpha_k|^2,$$

and

$$\left| \alpha_{j} - z \right|^{2} = Z_{j}(z) + r_{j}^{2},$$

enables one, after expanding (2), to write

(3)
$$\frac{Z(z)}{\prod_{j=0}^{i=p} Z_j(z)} \equiv \sum_{j=0}^p \frac{nm_j}{Z_j(z)} - \sum_{j=0}^p \sum_{k=j+1}^p \frac{m_j m_k \tau_{jk}}{Z_j(z) Z_k(z)},$$

where
$$n = \sum m_i$$
 and
 $\tau_{ik} = |\alpha_i - \alpha_k|^2 - (|m_i| m_i^{-1} \sigma_i r_i - |m_k| m_k^{-1} \sigma_k r_k)^2.$

The latter is the square of the common external or internal tangent of the circles $Z_j(z) = 0$ and $Z_k(z) = 0$ according as the product $|m_jm_k| (m_jm_k)^{-1}\sigma_j\sigma_k$ is positive or negative. The equation Z(z) = 0 represents for $n \neq 0$ a *p*-circular 2*p*-ic and for n = 0 in general a (p-1)-circular 2(p-1)-ic curve. The properties of these curves are studied in Marden II, p. 92.

^{*} Where no limits are indicated, a product or summation is to be taken from j=0 to j=p and from k=j+1 to k=p.

2. Three Lemmas.* (I). If the points t_0, t_1, \dots, t_p varying independently of one another describe the closed interiors of the circles T_0, T_1, \dots, T_p , respectively, the center and radius of T_i being γ_i and ρ_i , then the point $w = \sum_{j=0}^{p} m_j t_j$ describes the closed interior of a circle W with center at $\gamma = \sum_{j=0}^{p} m_j \gamma_j$ and radius of $\rho = \sum_{j=0}^{p} |m_j| \rho_j$.

For

$$|w-\gamma| = \left|\sum_{j=0}^{p} m_{j}(t_{j}-\gamma_{j})\right| \leq \rho;$$

conversely, if k and θ are arbitrary, $0 \le k \le 1$, and if $m_i(t_i - \gamma_i) = k |m_i| \rho_i e^{i\theta}$, then $w - \gamma = \sum k |m_i| \rho_i e^{i\theta} = k \rho e^{i\theta}$.

(II). If the points t_i , $(j \ge 1)$, vary as in Lemma (I), but the point t_0 describes the closed exterior of its circle T_0 , the locus of the point w is the closed exterior of a circle with center at $\gamma = \sum_{j=0}^{p} m_j \gamma_j$ and radius $\rho = 2 |m_0| \rho_0 - \sum_{j=0}^{p} |m_j| \rho_j$ provided $\rho > 0$, and is the entire plane if $\rho \le 0$.

For, when $\rho > 0$,

$$|w-\gamma| \ge |m_0(t_0-\gamma_0)| - \left|\sum_{j=1}^p m_j(t_j-\gamma_j)\right| \ge \rho;$$

conversely, if k and θ are arbitrary with $k \ge 1$, and if

$$m_0(t_0 - \gamma_0) = \left[\left| m_0 \right| \rho_0 + (k - 1)\rho \right] e^{i\theta},$$

and

$$m_{i}(t_{i} - \gamma_{i}) = - \left| m_{i} \right| \rho_{i} e^{i\theta}, \qquad (j \ge 1),$$

then $w - \gamma = k\rho e^{i\theta}$.

If ρ_0 decreases while ρ_j , $(j \ge 1)$, remain constant, ρ will approach zero and the locus of w will become the entire plane. The locus is, therefore, the entire plane for $\rho \le 0$.

(III). If the points t_i , $(j > k \ge 1)$, vary as in Lemma (I), but the points t_i , $(j \le k)$, describe the exteriors of their circles T_i , the locus W of w is the entire plane.

For, if each t_i , $(1 \le j \le k)$, were to vary merely interior to a

^{*} See J. L. Walsh, Transactions of this Society, vol. 24 (1922), p. 61 and p. 169; also H. Minkowski, Collected Works, vol. 2, p. 177.

circle T'_i drawn exterior to but not enclosing the circle T_i while the remaining t_i vary as indicated in Lemma (III), and if the radius ρ'_i of T'_i were chosen so that

$$|m_0| \rho_0 - \sum_{j=1}^k |m_j| \rho_{j'} - \sum_{j=k+1}^p |m_j| \rho_j = 0,$$

then by Lemma (II) the locus of w would be the entire plane.

3. Proof of Theorem 1. Let z be any fixed point exterior to all the regions Z_i ; that is, let z be such that $\sigma_i Z_i(z) > 0$, all j. Since $\sigma_i Z_i(z_i) \leq 0$, point $t_i = (z_i - z)^{-1}$ lies in or on the circle T_i with center $\gamma_i = (\bar{\alpha}_i - \bar{z})/Z_i(z)$ and radius $\rho_i = (\sigma_i \gamma_i)/Z_i(z)$. According to Lemma (I), the locus W_z of the point $w = \sum m_i t_i$ will be defined by the inequality:

(4)
$$\left| w - \sum_{j=0}^{p} \frac{m_{j}(\bar{\alpha}_{j} - \bar{z})}{Z_{j}(z)} \right|^{2} - \left(\sum_{j=0}^{p} \frac{\left| m_{j} \right| \sigma_{j} r_{j}}{Z_{j}(z)} \right)^{2} \leq 0.$$

Now, in order to be a zero of f'(z), point z must be a root of the equation

(5)
$$-\frac{f'(z)}{f(z)} = \sum_{j=0}^{p} \frac{m_j}{z_j - z} = 0;$$

that is, point w = 0 must satisfy inequality (4). Hence, any zero of f'(z), not satisfying any of the inequalities (1), must satisfy (2); that is to say, $\sigma Z(z) \leq 0$, where $\sigma = \prod \sigma_i$.

4. A Locus Problem. What then is the locus Z of the zeros of f'(z)/f(z) when the points z_i vary independently within their circular regions Z_i ?

Theorem 1 reveals that $\sigma Z(z) \leq 0$ for any point z of locus Z exterior to all the regions Z_j . Conversely, if exterior to all the regions Z_j , any point z for which $\sigma Z(z) \leq 0$ belongs to the locus Z. With the aid of Lemma (II), it can be shown that a point z interior to just one region Z_j belongs to locus Z if and only if either $\sigma Z(z) \leq 0$ or $\sigma S(z) \leq 0$, where

$$\frac{S(z)}{\prod Z_{j}(z)} = \sum_{j=0}^{p} \frac{\left| m_{j} \right| r_{j} \sigma_{j}}{Z_{j}(z)}$$

(The curve S(z) = 0, in general a *p*-circular 2*p*-ic, consists only of points on the boundaries of two or more regions Z_i or interior

to at least one region Z_i , the points z interior to just one region Z_i satisfying inequality $\sigma Z(z) \leq 0$.) Likewise, with the aid of Lemma (III), it can be shown that every point common to two or more regions Z_i belongs to locus Z.

If a given point z is to be on the boundary of locus Z, point w=0 must cease to be a point of W_z whenever the regions Z_i and hence W_z are diminished, no matter how slightly. That is to say, the point w=0 must be on the boundary of the locus W_z . This implies that Z(z)=0 if z, a boundary point of locus Z, is exterior to all the regions Z_i or interior to just one region Z_i with $\sigma Z(z) \leq 0$. It also implies that no boundary point z of locus Z may be either interior to just one region Z_i with $\sigma S(z) \leq 0$, or interior to two or more regions Z_i ; for, in those cases, the locus W_z is the entire plane.

In short, the locus Z is a set of regions bounded by the ovals of the curve Z(z) = 0, each region, according to Marden II, being simply-connected.

5. Applications. When p=2 and $n=m_0+m_1+m_2=0$, equation (5) may be written as the cross-ratio

(6)
$$(z_0 z_1 z_2 z) \equiv \frac{(z_0 - z_2)(z_1 - z)}{(z_0 - z)(z_1 - z_2)} = -\frac{m_1}{m_0}$$

Here

$$Z(z) \equiv -m_0 m_1 \tau_{01} Z_2(z) - m_1 m_2 \tau_{12} Z_0(z) - m_2 m_0 \tau_{20} Z_1(z) = 0,$$

$$S(z) \equiv |m_0| r_0 \sigma_0 Z_1(z) Z_2(z) + |m_1| r_1 \sigma_1 Z_2(z) Z_0(z) + |m_2| r_2 \sigma_2 Z_0(z) Z_1(z) = 0,$$

represent in general a circle and bicircular quartic, respectively. If λ denotes the coefficient of the term $(x^2 + y^2)$ in the expression Z(z), the region $\sigma Z(z) \leq 0$ is the interior or exterior of the circle Z(z) = 0 according as $\sigma \lambda > 0$ or $\sigma \lambda < 0$. Hence, if all the points for which $\sigma S(z) \leq 0$ lie in the region $\sigma Z(z) \leq 0$, the locus Z will be the interior or exterior of circle Z(z) = 0 according as $\sigma \lambda > 0$ or $\sigma \lambda < 0$. If, however, not all the points for which $\sigma S(z) \leq 0$ lie in the region $\sigma Z(z) \leq 0$ lie in the region $\sigma Z(z) \leq 0$ lie in the region $\sigma X < 0$. If, however, not all the points for which $\sigma S(z) \leq 0$ lie in the region $\sigma Z(z) \leq 0$, the locus will be the entire plane. This discussion verifies the following theorem due to Walsh.*

^{*} J. L. Walsh, Transactions of this Society, vol. 22 (1921), pp. 101-116, and Rendiconti di Palermo, vol. 46 (1922), pp. 1-13. See also A. B. Coble, this Bulletin, vol. 27 (1921), pp. 434-437; T. Nakahara, Tôhoku Mathematical Journal, vol. 23 (1924), p. 97; and Marden II.

If the points z_0 , z_1 , and z_2 varying independently of one another describe given circular regions Z_0 , Z_1 , and Z_2 , then the point z defined by the constant cross-ratio ($z_0z_1z_2z$) = c also describes a circular region Z.

On allowing a number of the regions Z_i to coincide, we deduce from Theorem 1 the following corollary.

COROLLARY 1. If all the zeros of a polynomial $f_i(z)$ of degree n_i lie in the circular region Z_i , then every zero of the derivative of the product

$$\prod_{j=0}^{p} \left[f_j(z) \right]^{q_j}$$

will satisfy at least one of the p+2 inequalities (1) and (2) with $m_i = n_i q_i$.*

In particular, upon setting $f_i(z) = f(z) - \gamma_i$, we obtain from Corollary 1 a generalization of a theorem stated by Jentsch and proved by Fekete.[†]

COROLLARY 2. If all the points at which a given polynomial f(z) takes on the value γ_i lie in the circular region Z_i , then every root z of the equation

$$\sum_{j=0}^{p} \frac{m_j}{f(z) - \gamma_j} = 0$$

satisfies at least one of the p+2 inequalities (1) and (2).

6. Generalizations. By requiring $w = \lambda$ instead of w = 0 to satisfy inequality (4), we are led to the following result.

THEOREM 2. Under the hypotheses of Theorem 1 or of Corollary 1, every zero of the function $f'(z) + \lambda f(z)$ satisfies at least one of the p+2 inequalities

(7)
$$\sigma_j Z_j(z) \leq 0, \qquad (j = 0, 1, \cdots, p),$$

(8)
$$\left|\lambda - \sum_{j=0}^{p} \frac{m_{j}(\bar{\alpha}_{j} - \bar{z})}{Z_{j}(z)}\right|^{2} - \left(\sum_{j=0}^{p} \frac{\left|m_{j}\right| \sigma_{j}r_{j}}{Z_{j}(z)}\right)^{2} \leq 0.$$

* This corollary contains as special cases a number of important theorems due to Gauss-Lucas, Laguerre, Böcher, and Walsh. See Marden I.

[†] R. Jentsch, Archiv der Mathematik und Physik, vol. 25 (1917), p. 196, prob. 526; M. Fekete, Jahresbericht der Deutschen Mathematiker-Vereinigung, vol. 31 (1922), pp. 42–48; Pólya-Szegö, Aufgaben und Lehrsätze aus der Analysis, vol. 2, p. 61, probs. 126–127. MORRIS MARDEN

If all the m_i are real, the left-hand side of (8) may be rewritten, with the aid of the identities given in §1, as

(9)
$$\sum_{j=0}^{p} \frac{|\lambda|^2 m_j \Gamma_j(z)}{n Z_j(z)} - \sum_{j=0}^{p} \sum_{k=j+1}^{p} \frac{m_j m_k \tau_{jk}}{Z_j(z) Z_k(z)},$$

where

$$\Gamma_{i}(z) \equiv \left| z - (\alpha - n\lambda^{-1}) \right|^{2} - r_{i}^{2}.$$

The equation $\Gamma_i(z) = 0$ represents the circle obtained by translating the circle $Z_i(z) = 0$ in the direction and magnitude of the vector n/λ . Set equal to zero, expression (7) represents a (p+1)circular 2(p+1)-ic curve with singular foci at the roots of the equation

$$\lambda + \sum_{j=0}^{p} \frac{m_j}{z - \alpha_j} = 0.$$

In particular, assuming the hypotheses of Corollary 1, and setting $\sigma_0 - 1 = p = p_0 - 1 = 0$, we find this curve to reduce to the circle $\Gamma_0(z) = 0$. In other words, if all zeros of a polynomial f(z)of degree n lie in a given circle, any zero of the linear combination $f'(z) + \lambda f(z)$ will lie either in the given circle or in the one obtained by translating the given circle in the direction and magnitude of the vector $n\lambda^{-1}$.*

Finally, by requiring w = g(z), an arbitrary function of z, instead of w = 0, to satisfy inequality (4), we obtain a theorem similar to Theorem 2 for the zeros of the function f'(z) + g(z)f(z). For example, if $g(z) = \overline{z}$, and if all the zeros of a polynomial f(z) of degree n lie in the circle $|z| \leq r \leq 2n^{1/2}$, all zeros of the function $\overline{z}f(z) + f'(z)$ lie in the same circle.

UNIVERSITY OF WISCONSIN, MILWAUKEE EXTENSION CENTER

* See M. Fujiwara, Tôhoku Mathematical Journal, vol. 9 (1916), pp. 102– 108; T. Takagi, Proceedings of the Physico-Mathematical Society of Japan, vol. 3 (1921), pp. 175–179; J. L. Walsh, this Bulletin, vol. 30 (1924), p. 52.

406