ON THE GENERATION OF THE FUNCTIONS *Cpq* AND *Np* OF LUKASIEWICZ AND TARSKI BY MEANS OF A SINGLE BINARY OPERATION

BY J. C. C. McKINSEY*

Indicating the *n* "truth-values" of a Lukasiewicz-Tarski logic[†] by the *n* numbers $1, 2, \dots, n$, we define the functions Cpq and Np as follows:

$$Cpq = 1$$
, when $p \ge q$,
 $Cpq = q - p + 1$, when $p < q$,
 $Np = n - p + 1$.

Thus, for example, for n = 3 we have

С	1	2	3	Þ	Np
1	1	2	3	1	3
2	1	1	2	2	2
3	1	1	1	3	1

I shall denote a Lukasiewicz-Tarski logic of n truth-values by L_n .

In this paper I define, \ddagger in terms of Cpq and Np, a function E_ipq such that, in each L_n , Cpq and Np are in turn definable in terms of $E_{n-2}pq$. The function E_ipq is defined by means of the following series of definitions.

DEFINITION 1. $A_0 p = p$, $A_{i+1} p = CNpA_i p$. DEFINITION 2. $B_0 p = Np$, $B_{i+1} p = CpB_i p$. DEFINITION 3. $D_i p = CA_i pNCpNB_i p$. DEFINITION 4. $E_i pq = CpD_i q$.

* Blumenthal Research Fellow.

[†] For a general discussion of this logic, see Lewis and Langford, Symbolic Logic, pp. 199-234.

[‡] D. L. Webb has recently found (*The generation of any n-valued logic by one binary operation*, Proceedings of the National Academy of Sciences, vol. 21 (1935), pp. 252–254) a binary operation by means of which it is possible to generate any operation of any *n*-valued logic. His operation, however, cannot be defined in terms of Cpq and Np except when n=2. This can be seen from the fact that the operations Cpq and Np are class-closing on the elements 1, *n*; whereas the operation found by Webb has not this property.

In terms of $E_i pq$ I define certain other functions as follows:

DEFINITION 5. $F_i p = E_i E_i p p E_i E_i p p E_i p p$. DEFINITION 6. $M_i p = E_i p F_i p$. DEFINITION 7. $I_i p q = E_i p E_i F_i q q$.

I shall now show that, in L_n , $M_{n-2} = Np$, and $I_{n-2}pq = Cpq$; hence that, in L_n , Cpq and Np are definable in terms of the single binary operation $E_{n-2}pq$.

THEOREM 1. For every n in L_n we have

 $A_{n-2}n = n$, and $A_{n-2}p = 1$ for $p \neq n$.

PROOF. I prove the first part of the theorem by mathematical induction on *i*. By Definition 1, $A_0n = n$. Suppose that $A_kn = n$; then $A_{k+1}n = CNnA_kn = CNnn = Cln = n$. Hence for every *i* we have $A_in = n$; so, in particular, $A_{n-2}n = n$.

I prove the second part of the theorem by reductio ad absurdum. Suppose, if possible, that the second part of the theorem is false, so that there exists a $p_0 < n$ for which $A_{n-2}p_0 > 1$. I first show that, on this supposition, $A_ip_0 > 1$ for every $i \le n-2$; for if we had $A_ip_0=1$ we should have $A_{i+1}p_0 = CNp_0A_ip_0$ $= CNp_01=1$, so we should have $A_{n-2}p_0=1$, contrary to hypothesis. It can be shown that $A_1p_0 \le n-2$; for from $p_0 < n$ follows $p_0 \le n-1$, whence $2p_0 \le 2n-2$, whence $2p_0 - n \le n-2$; and, since $A_1p_0 \ne 1$, we have $A_1p_0 = CNp_0p_0 = p_0 - (Np_0) + 1 = p_0$ $-(n-p_0+1)-1=2p_0-n$. It can also be shown that for each k, (n-2>k>1), we have $A_{k+1}p_0 < A_kp_0$; for from $p_0 < n$ follows $n-p_0+1>1$, so $Np_0>1$; whence $A_kp_0 - Np_0+1 < A_kp_0$, and since $A_{k+1}p_0 \ne 1$, we have $A_{k+1}p_0 = A_kp_0 - Np_0+1$. Thus we have

$$A_{n-2}p_0 < A_{n-3}p_0 < \cdots < A_2p_0 < A_1p_0 \leq n-2.$$

Hence

$$A_{n-2}p_0 \leq A_1p_0 - (n-3) \leq (n-2) - (n-3)$$

and $A_{n-2}p \leq 1$. But this is contrary to hypothesis. Hence the second part of the theorem is true.

The proof of the following theorem is similar.

THEOREM 2. For every n in L_n we have

$$B_{n-2}1 = n$$
, and $B_{n-2}p = 1$ for $p \neq 1$.

850

THEOREM 3. For every n in L_n we have

 $D_{n-2}1 = n$, $D_{n-2}n = 1$, $D_{n-2}p = p$ for $p \neq 1, n$.

PROOF. By Theorems 1 and 2, and the definitions of Cpqand Np, we have $D_{n-2}1 = CA_{n-2}1NC1NB_{n-2}1 = C1NC1Nn$ = C1NC11 = C1n = n, $D_{n-2}n = CA_{n-2}nNCnB_{n-2}n = CnNCn1$ = CnNn = Cn1 = 1. Suppose now that $p \neq 1$, n. Then $D_{n-2}p$ $= CA_{n-2}pNCpNB_{n-2}p = C1NCpN1 = C1NCpn = C1N(n-p+1)$ = C1[n-(n-p+1)+1] = C1p = p.

THEOREM 4. For every $p \neq 1$ in L_n , $E_{n-2}pp = 1$; and $E_{n-2}11 = n$.

PROOF. If $p \neq 1$, *n* then, by Theorem 3, $E_{n-2}pp = CpD_{n-2}p = Cpp = 1$. If p = n, then $E_{n-2}pp = CnD_{n-2}n = Cn1 = 1$. If p = 1, finally, $E_{n-2}pp = C1D_{n-2}1 = C1n = n$.

THEOREM 5. For every p in L_n , $F_{n-2}p = 1$.

PROOF. If $p \neq 1$, then, by Theorem 4, we have

$$F_{n-2}p = E_{n-2}E_{n-2}ppE_{n-2}E_{n-2}ppE_{n-2}pp = E_{n-2}1E_{n-2}11$$

= $E_{n-2}1n = C1D_{n-2}n = C11 = 1.$

If p = 1, then, again by Theorem 4,

$$F_{n-2}p = E_{n-2}E_{n-2}11E_{n-2}E_{n-2}11E_{n-2}11 = E_{n-2}nE_{n-2}nn$$

= $E_{n-2}n1CnD_{n-2}1 = Cnn = 1.$

THEOREM 6. For every p in L_n , $M_{n-2}p = Np$.

PROOF. $M_{n-2}p = E_{n-2}pF_{n-2}p = E_{n-2}p1 = CpD_{n-2}1 = Cpn = Np$.

THEOREM 7. For every p and q in L_n , $I_{n-2}pq = Cpq$.

Proof.

$$I_{n-2}pq = E_{n-2}pE_{n-2}F_{n-2}qq = E_{n-2}pE_{n-2}1q$$

= $E_{n-2}pC1D_{n-2}q = E_{n-2}pD_{n-2}q = CpD_{n-2}D_{n-2}q.$

But, by Theorem 3, we have $D_{n-2}D_{n-2}q = q$. Hence $I_{n-2}pq = Cpq$.

Thus we have shown that in each L_n it is possible to define in terms of Cpq and Np a function, namely, $E_{n-2}pq$, in terms of which Cpq and Np are again definable.

New York University

1936.]