ON THE GENERATION OF THE FUNCTIONS Cpq AND $N p$ OF LUKASIEWICZ AND TARSKI BY MEANS OF A SINGLE BINARY OPERATION

BY J. C. C. McKINSEY*

Indicating the n "truth-values" of a Lukasiewicz-Tarski logic \dagger by the n numbers $1,2, \cdots, n$, we define the functions $C p q$ and $N p$ as follows:

$$
\begin{aligned}
& C p q=1, \text { when } p \geqq q, \\
& C p q=q-p+1, \text { when } p<q, \\
& N p=n-p+1 .
\end{aligned}
$$

Thus, for example, for $n=3$ we have

C	1	2	3
1	1	2	3
2	1	1	2
3	1	1	1

p	$N p$
1	3
2	2
3	1

I shall denote a Lukasiewicz-Tarski logic of n truth-values by L_{n}.
In this paper I define, \ddagger in terms of $C p q$ and $N p$, a function $E_{i} p q$ such that, in each $L_{n}, C p q$ and $N p$ are in turn definable in terms of $E_{n-2} p q$. The function $E_{i} p q$ is defined by means of the following series of definitions.

Definition 1. $A_{0} p=p, A_{i+1} p=C N p A_{i} p$.
Definition 2. $B_{0} p=N p, B_{i+1} p=C p B_{i} p$.
Definition 3. $D_{i} p=C A_{i} p N C p N B_{i} p$.
Definition 4. $E_{i} p q=C p D_{i} q$.

[^0]In terms of $E_{i} p q$ I define certain other functions as follows:
Definition 5. $F_{i} p=E_{i} E_{i} p p E_{i} E_{i} p p E_{i} p p$.
Definition 6. $M_{i} p=E_{i} p F_{i} p$.
Definition 7. $I_{i} p q=E_{i} p E_{i} F_{i} q q$.
I shall now show that, in $L_{n}, M_{n-2}=N p$, and $I_{n-2} p q=C p q$; hence that, in $L_{n}, C p q$ and $N p$ are definable in terms of the single binary operation $E_{n-2} p q$.

Theorem 1. For every n in L_{n} we have

$$
A_{n-2} n=n, \quad \text { and } \quad A_{n-2} p=1 \text { for } p \neq n
$$

Proof. I prove the first part of the theorem by mathematical induction on i. By Definition $1, A_{0} n=n$. Suppose that $A_{k} n=n$; then $A_{k+1} n=C N n A_{k} n=C N n n=C l n=n$. Hence for every i we have $A_{i} n=n$; so, in particular, $A_{n-2} n=n$.

I prove the second part of the theorem by reductio ad absurdum. Suppose, if possible, that the second part of the theorem is false, so that there exists a $p_{0}<n$ for which $A_{n-2} p_{0}>1$. I first show that, on this supposition, $A_{i} p_{0}>1$ for every $i \leqq n-2$; for if we had $A_{i} p_{0}=1$ we should have $A_{i+1} p_{0}=C N p_{0} A_{i} p_{0}$ $=C N p_{0} 1=1$, so we should have $A_{n-2} p_{0}=1$, contrary to hypothesis. It can be shown that $A_{1} p_{0} \leqq n-2$; for from $p_{0}<n$ follows $p_{0} \leqq n-1$, whence $2 p_{0} \leqq 2 n-2$, whence $2 p_{0}-n \leqq n-2$; and, since $A_{1} p_{0} \neq 1$, we have $A_{1} p_{0}=C N p_{0} p_{0}=p_{0}-\left(N p_{0}\right)+1=p_{0}$ $-\left(n-p_{0}+1\right)-1=2 p_{0}-n$. It can also be shown that for each k, ($n-2>k>1$), we have $A_{k+1} p_{0}<A_{k} p_{0}$; for from $p_{0}<n$ follows $n-p_{0}+1>1$, so $N p_{0}>1$; whence $A_{k} p_{0}-N p_{0}+1<A_{k} p_{0}$, and since $A_{k+1} p_{0} \neq 1$, we have $A_{k+1} p_{0}=A_{k} p_{0}-N p_{0}+1$. Thus we have

$$
A_{n-2} p_{0}<A_{n-3} p_{0}<\cdots<A_{2} p_{0}<A_{1} p_{0} \leqq n-2
$$

Hence

$$
A_{n-2} p_{0} \leqq A_{1} p_{0}-(n-3) \leqq(n-2)-(n-3)
$$

and $A_{n-2} p \leqq 1$. But this is contrary to hypothesis. Hence the second part of the theorem is true.

The proof of the following theorem is similar.
Theorem 2. For every n in L_{n} we have

$$
B_{n-2} 1=n, \quad \text { and } \quad B_{n-2} p=1 \text { for } p \neq 1
$$

Theorem 3. For every n in L_{n} we have

$$
D_{n-2} 1=n, \quad D_{n-2} n=1, \quad D_{n-2} p=p \text { for } p \neq 1, n
$$

Proof. By Theorems 1 and 2, and the definitions of $C p q$ and $N p$, we have $D_{n-2} 1=C A_{n-2} 1 N C 1 N B_{n-2} 1=C 1 N C 1 N n$ $=C 1 N C 11=C 1 n=n, \quad D_{n-2} n=C A_{n-2} n N C n B_{n-2} n=C n N C n 1$ $=C n N n=C n 1=1$. Suppose now that $p \neq 1, n$. Then $D_{n-2} p$ $=C A_{n-2} p N C p N B_{n-2} p=C 1 N C p N 1=C 1 N C p n=C 1 N(n-p+1)$ $=C 1[n-(n-p+1)+1]=C 1 p=p$.

Theorem 4. For every $p \neq 1$ in $L_{n}, E_{n-2} p p=1$; and $E_{n-2} 11=n$.
Proof. If $p \neq 1, n$ then, by Theorem 3, $E_{n-2} p p=C p D_{n-2} p$ $=C p p=1$. If $p=n$, then $E_{n-2} p p=C n D_{n-2} n=C n 1=1$. If $p=1$, finally, $E_{n-2} p p=C 1 D_{n-2} 1=C 1 n=n$.

Theorem 5. For every p in $L_{n}, F_{n-2} p=1$.
Proof. If $p \neq 1$, then, by Theorem 4, we have

$$
\begin{aligned}
F_{n-2} p & =E_{n-2} E_{n-2} p p E_{n-2} E_{n-2} p p E_{n-2} p p=E_{n-2} 1 E_{n-2} 11 \\
& =E_{n-2} 1 n=C 1 D_{n-2} n=C 11=1 .
\end{aligned}
$$

If $p=1$, then, again by Theorem 4,

$$
\begin{aligned}
F_{n-2} p & =E_{n-2} E_{n-2} 11 E_{n-2} E_{n-2} 11 E_{n-2} 11=E_{n-2} n E_{n-2} n n \\
& =E_{n-2} n 1 C n D_{n-2} 1=C n n=1 .
\end{aligned}
$$

Theorem 6. For every p in $L_{n}, M_{n-2} p=N p$.
Proof. $M_{n-2} p=E_{n-2} p F_{n-2} p=E_{n-2} p 1=C p D_{n-2} 1=C p n=N p$.
Theorem 7. For every p and q in $L_{n}, I_{n-2} p q=C p q$.
Proof.

$$
\begin{aligned}
I_{n-2} p q & =E_{n-2} p E_{n-2} F_{n-2} q q=E_{n-2} p E_{n-2} 1 q \\
& =E_{n-2} p C 1 D_{n-2} q=E_{n-2} p D_{n-2} q=C p D_{n-2} D_{n-2} q .
\end{aligned}
$$

But, by Theorem 3, we have $D_{n-2} D_{n-2} q=q$. Hence $I_{n-2} p q=C p q$.
Thus we have shown that in each L_{n} it is possible to define in terms of $C p q$ and $N p$ a function, namely, $E_{n-2} p q$, in terms of which $C p q$ and $N p$ are again definable.

New York University

[^0]: * Blumenthal Research Fellow.
 \dagger For a general discussion of this logic, see Lewis and Langford, Symbolic Logic, pp. 199-234.
 \ddagger D. L. Webb has recently found (The generation of any n-valued logic by one binary operation, Proceedings of the National Academy of Sciences, vol. 21 (1935), pp. 252-254) a binary operation by means of which it is possible to generate any operation of any n-valued logic. His operation, however, cannot be defined in terms of $C p q$ and $N p$ except when $n=2$. This can be seen from the fact that the operations $C p q$ and $N p$ are class-closing on the elements $1, n$; whereas the operation found by Webb has not this property.

