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Hence the bracket symbols form a semi-ring. The commutative 
law of addition does not hold in general in this semi-ring since 

[A,p]+ [B,y] = [AB,P + y], 

[B,y]+ [A,0] = [BA,y + 0], 

but BA 9^AB. These symbols have a property under addition 
which might be called quasi-commutativity : 

[« , j8 ]+ k / 5 ] + [ T , Ô ] + [7,ô] 

= k / ^ ] + [ 7 , ô ] + [a,p] + [7 ,5] , 

for the left-hand member reduces to [7, j8+/3 + ô + ô] and the 
right to [7, j8 + 8+j8 + §], which are equal since ^ 4 , 5 , and C 
are commutative under addition. I t is also easy to see that 
MNMN = MMNN, for M and N are bracket symbols. 

T H E UNIVERSITY OF T E X A S 

BRANCHED AND FOLDED COVERINGS* 

BY A. W. TUCKER 

A simple example of a branched covering arises when one 
sphere is mapped on another so tha t each point of the first 
sphere goes into the point of the second which has the same 
latitude but double the longitude. This is a covering of degree 
two with simple branching at the north and south poles. As 
an example of a folded covering we take a torus, thought of as 
a sphere with a handle on one side, and project it radially in
ward on a smaller concentric sphere. The torus covers the sphere 
once but with a fold produced by collapse of the handle. The 
product of this torus-sphere covering with the previous sphere-
sphere covering yields a torus-sphere covering of degree two 
which is both branched and folded. Suitable triangulation of the 
torus and the spheres will turn the above mappings into sim-
plicial mappings in which each simplex maps barycentrically 
into a simplex of the same dimension. In what follows we make 
some rudimentary calculations concerning the branching and 
folding of a simplicial covering of one ^-dimensional complex by 

* Presented to the Society, September i, 1936. 
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another. We obtain two formulas which connect the Euler char
acteristics (numbers) of the complexes with those of the sub-
complexes about which the branching and folding occur. 

Let K-+K' be a (continuous) simplicial mapping of one sim-
plicial ^-complex, K, on another, Kf. For the sake of simplicity 
we assume that K and Kf are absolute orientable manifolds* 
and that each ^-simplex 5 of K goes into a ^-simplex s' of K', 
that is, that no simplex s collapses into one of lower dimension. 
Later, however, we shall weaken these assumptions in various 
ways. Let the fundamental ^-cycles C, C' of K, K' be oriented 
so that C-^dCf, where the integer d^O; d is the degree of the 
mapping. Let C{s) denote the part of C which lies on the star 
of the simplex s, and C'(s') the part of Cf which lies on the star 
of the corresponding s'. Then the integer d(s) defined by 
C(s)~>d(s)C'(s') measures the degree of 5 in the mapping. Nor
mally d(s) = 1 ; if d(s) ?£• 1 we say that 5 is exceptional in the map
ping. If d(s) > 1 the exceptionality is a branching about s of 
multiplicity d(s) — 1. If d(s) =0, s belongs to the crease of a fold 
in the covering. If d(s) <0, s belongs to a part of K which gives 
a negatively sensed layer of a fold ; s contributes simply to the 
layer if d(s) = — 1, otherwise there is branching about 5 of multi
plicity | d(s) | — 1. Our use of the terms branching and fold is in 
accord with their customary meaning as applied to coverings, 
but for the purpose of this paper the descriptions just given 
may be regarded as definitions of these terms. 

Let the integer e(s) =d(s) — l be taken as a measure of the 
exceptionality of s in the mapping. For each integer eXO we 
form the simplexes of exceptionality e(s) =e, if any, into one or 
more subcomplexes K[e]i, (i=l,2, • • • ,n^).\ In practice the K[e]i 

will arise as natural connected units about which the branching 
and folding (and negative stratification) occur. For example, 
in the torus-sphere covering of degree two described in the open
ing paragraph the i£[1]* = the two branch points at the poles, 
the in~1]* = four open segments which constitute the lines of 
fold, and the iT[~2]* = an open region on the inner surface of the 

* See Lefschetz, Topology, for the terminology. 
f Subcomplex is used in the general sense of the author 's thesis, An ab

stract approach to manifolds, Annals of Mathematics, (2), vol. 34 (1933), pp. 
191-243, as applying to any subset of simplexes on which the (relative) 
boundary of a (relative) boundary is zero. 
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handle—a 2-cell bounded by the K[~l]i. However, for the pur
pose of our calculations it does not matter just how the K[e]i are 
constructed. At worst each K[e]i may consist of an individual 
simplex. 

Summing over all 5 which map into a given s' we have 
^2d(s) =d, the degree of the mapping. Therefore, extending the 
sum over all ^-simplexes s, we get y^d(s) —daj, where ap is 
the number of ^-simplexes in K'. Hence ap+^e(s) = dap'. But 
^2e(s) =^2e^2ieap

[e]i. Therefore ap+£^ieap
[e]i = daj , and so 

e i 

where X = ^ p ( - l ) % p , • • • , are the Euler characteristics of Ky 

• • • . This is the first of our two formulas. If the covering has 
neither branching nor folding the sum on the left side is zero and 
we have the familiar formula X = dXf. If there is branching but 
no folding only positive values of e occur on the left; we have a 
generalization of the formula used to characterize a Riemann 
surface by its branch-points and number of sheets. If there is 
folding without branching the sum on the left side is zero except 
for e = — 1, — 2. Values of e < — 2 go with branching inside nega
tive stratification. In the torus-sphere covering of degree two 
described in our opening paragraph X = 0, X' = 2, d = 2, 
E ^ ( l ) ^ [ 1 H = 2 , E K - l ) ^ [ - 1 H = 4 , i : , ( - 2 ) X t - 2 H = - 2 . 

In contrast with the preceding work where orientation has 
played such an essential part we now turn to calculations of an 
absolute nature, based on | d(s) | rather than on d(s). One justi
fication of this is the fact tha t the sign of d(s) has no meaning 
from a local point of view—it was determined by the orientation 
of C, C' so that C-^dC where d ^ 0. We use e(s) = | d(s) | - 1 as 
a measure of the absolute exceptionality of s; in terms of e(s) 
we form subcomplexes K[e]j, (j = l, 2, • • • , n€), just as we did 
with e(s) above. Let ô(s') denote the s u m ^ l ^ W l taken over 
all s which map into a given s'; the values of S(s') differ for 
different s' but are all congruent mod 2 since extra layers occur 
in pairs. We choose a non-negative number ô^each 8(sf) but 
congruent to each mod 2, and we set ô(V) = 5 + 2À(V). The non-
negative integer A(V) measures the number of pairs of layers 
there are over s' in excess of the basic number which we have 
chosen. From the simplexes s' for which X(V)=M>0 w e form 
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subcomplexes K'[*]k, (& = 1, 2, • • • , wM). Then summing over 
all ^-simplexes s we g e t ^ | d ( ^ ) | =8aJ +2^2^2k<xJ [/i]*. Hence 
aP+J2<s)=ôap

f+2j2^aJ^K But 2 > M = É « E I « * P M ' . 

Therefore ap+Y,€J2jeap^
h'==daj +2^11^ M*, and so 

t j ix k 

This is the second of our two formulas. I t applies even if Kr 

is not orientable (in which case K may or may not be orient-
able). If K' is orientable the degree d will probably be taken as 
the value of 5, but this is not necessary. 

We started with the assumption that Kf K' were orientable 
absolute w-manifolds, but the only use we have made of this 
assumption has been for the ^-cycles C, C' and the relative 
w-cycles C(s), Cf(sf). All we really need to assume is tha t i£ , K' 
are orientable n-circuits and tha t the star of each simplex of K' 
carries an irreducible basis Cf(sf) ^ 0 ; for the second formula we 
may dispense with the orientability of K' and leave the orienta-
bility of K an open question. 

We may also weaken the assumption that in the mapping 
K—+K' each simplex 5 goes into a simplex sf of like dimension. 
I t is sufficient to suppose that K can be divided into ^-cell-like* 
subcomplexes S which map into ^-simplexes s''. These S take 
the place of the simplexes 5 in the preceding work; a £-cell-like 
5, like a ^-simplex s, has an Euler characteristic ( — l)p. The 
star of an S would be the minimal open subcomplex contain
ing 5 and composed of 5's. This extension to more general sim-
plicial coverings has importance for simplicial approximation of 
continuous coverings. 

PRINCETON UNIVERSITY 

* See Tucker, loc. cit. The following is a simple example of a 1-cell-like 
5 mapping into a 1-simplex s'. Let three tetrahedra ABCD, ABDE, ABEF 
be collapsed by the mapping A—>A' and B, C, D, E, F-*B'. The three tetra
hedra and all their faces and edges incident with A are mapped into A 'B'. The 
aggregate of these simplexes is readily seen to be a 1-cell-like subcomplex 
( = a solid cone with vertex and base removed). 


