ON HIGHER DERIVATIVES OF ORTHOGONAL POLYNOMIALS*

BY H. L. KRALL

1. Introduction. Let $\left\{\phi_{n}(x)\right\}$ be a set of orthogonal polynomials in a finite interval (a, b) with the integrable (L) weight function $\dagger p(x)$, that is,

$$
\int_{a}^{b} p(x) \phi_{n}(x) \phi_{m}(x) d x=0, \quad(n \neq m)
$$

$p(x) \geqq 0, \quad \int_{a}^{b} p(x) d x>0, \quad \phi_{n}(x)=x^{n}+a_{n, n-1} x^{n-1}+\cdots+a_{n 0}$.
It has been shown \ddagger that if the first derivatives $\left\{\phi_{n}{ }^{\prime}(x)\right\}$ also form a set of orthogonal polynomials, then the original set are Jacobi polynomials. The purpose here is to show that if the r th derivatives $\left\{\phi_{n}{ }^{r}(x)\right\}$ form an orthogonal set, then again $\left\{\phi_{n}(x)\right\}$ is a set of Jacobi polynomials. The proof is based on the following lemma.§

Lemma. Let $Q(x)$ be non-negative in the (finite or infinite) interval (c, d), and such that the constants β defined by the formula

$$
\beta_{k}=\int_{c}^{d} Q(x) x^{k} d x, \quad(k=0,1, \cdots)
$$

exist, and for a certain positive integer r

$$
\int_{c}^{d} Q(x) \phi_{n}(x) G_{n-r-1}(x) d x=0, \quad(n=r+1, r+2, \cdots)
$$

[^0]where $G_{n}(x)$ is an arbitrary polynomial of degree $\leqq n$. Then almost everywhere
\[

Q(x)=\left\{$$
\begin{array}{l}
P_{r}(x) p(x) \text { in }(a, b) \\
0 \text { elsewhere }
\end{array}
$$\right.
\]

where $P_{r}(x)$ is a polynomial of degree $\leqq r$.
2. Identity of the Intervals of Orthogonality. The $\left\{\phi_{n}(x)\right\}$ satisfy the recurrence relations
$\phi_{n+2}(x)=\left(x-c_{n+2}\right) \phi_{n+1}(x)-\lambda_{n+2} \phi_{n}(x), \quad\left(c_{n+2}, \lambda_{n+2}\right.$, constants $)$.
Differentiating this r times, we obtain

$$
\begin{align*}
& \phi_{n+2}^{\prime}(x)=\left(x-c_{n+2}\right) \phi_{n+1}^{\prime}(x)-\lambda_{n+2} \phi_{n}^{\prime}(x)+\phi_{n+1}(x), \\
& \phi_{n+2}^{\prime \prime}(x)=\left(x-c_{n+2}\right) \phi_{n+1}^{\prime \prime}(x)-\lambda_{n+2} \phi_{n}^{\prime \prime}(x)+2 \phi_{n+1}^{\prime}(x), \tag{1}\\
& \phi_{n+2}^{r}(x)=\left(x-c_{n+2}\right){ }_{\phi+1}^{r}(x)-\lambda_{n+2} \phi_{n}^{r}(x)+r \phi_{n+1}^{r-1}(x) .
\end{align*}
$$

Let $q(x)$ be the weight function of the orthogonal set $\left\{\phi_{n}{ }^{r}(x)\right\}$ in the interval (c, d). If we multiply the last equation of (1) by $q(x) G_{n-r-1}(x)$ and integrate, we get

$$
\int_{c}^{d} q(x) \phi_{n+1}^{r-1}(x) \boldsymbol{G}_{n-r-1}(x) d x=0, \text { or } \int_{c}^{d} q(x) \phi_{n}^{r-1}(x) \boldsymbol{G}_{n-r-2}(x) d x=0
$$

In this way we obtain successively

$$
\begin{array}{r}
\int_{c}^{d} q(x) \phi_{n}^{r-1}(x) G_{n-r-2}(x) d x
\end{array}=0, \int_{c}^{d} q(x) \phi_{n}^{r-2}(x) G_{n-r-3}(x) d x=0, ~=, \int_{c}^{d} q(x) \phi_{n}(x) G_{n-2 r-1}(x) d x=0 . ~ \$
$$

The lemma can be applied to the last equation, whence

$$
q(x)=P_{2 r}(x) p(x), \quad(a, b) \equiv(c, d)
$$

3. Existence of $q^{r}(x)$. Consider the function

$$
S(x)=\int_{a}^{x} d x_{1} \int_{a}^{x_{1}} d x_{2} \cdots \int_{a}^{x_{r-1}}\left(f_{r} t^{r}+f_{r-1} t^{r-1}+\cdots+f_{0}\right) p(t) d t
$$

$$
=\frac{1}{(r-1)!} \int_{a}^{x}(x-t)^{r-1}\left(f_{r} t^{r}+\cdots+f_{0}\right) p(t) d t
$$

where the constants $f_{r}, f_{r-1}, \cdots, f_{0}$ are determined so that
$S(b)=S^{\prime}(b)=\cdots=S^{r-1}(b)=0, \quad \int_{a}^{b} S(x) d x=\int_{a}^{b} q(x) d x$.
From the definition of $S(x)$, it follows that $S(a)=S^{\prime}(a)=\cdots$ $=S^{r-1}(a)=0$, and $S^{r}(x)=\left(f_{r} x^{r}+\cdots+f_{0}\right) p(x)$. Successive integration by parts gives

$$
\begin{align*}
\int_{a}^{b} S(x) \phi_{n}^{r}(x) d x & =\int_{a}^{b} S^{\prime}(x) \phi_{n}^{r-1}(x) d x=\cdots \\
& =\int_{a}^{b} S^{r}(x) \phi_{n}(x) d x=0, \quad(n \geqq r+1) \tag{3}
\end{align*}
$$

Thus
(4) $\int_{a}^{b} S(x) \phi_{n}^{r}(x) d x=\int_{a}^{b} q(x) \phi_{n}^{r}(x) d x=0, \quad(n \geqq r+1)$.

Since $\int_{a}^{b} S(x) d x=\int_{a}^{b} q(x) d x$, and $\phi_{n}^{r}(x)$ is of degree $n-r$, we have

$$
\int_{a}^{b} x^{n} S(x) d x=\int_{a}^{b} x^{n} q(x) d x, \quad(n \geqq 0)
$$

so that $q(x) \equiv S(x)$ almost everywhere. Thus $q^{r}(x)$ exists almost everywhere and

$$
\begin{align*}
q^{r}(x) & =P_{r}(x) p(x) \\
q(a) & =q^{\prime}(a)=\cdots=q^{r-1}(a)=q(b) \tag{5}\\
& =q^{\prime}(b)=\cdots=q^{r-1}(b)=0 .
\end{align*}
$$

4. Relations for the Derivatives of $q(x)$. An integration by parts applied to the next to last equation of (2) gives

$$
\begin{aligned}
0=\int_{a}^{b} q(x) \phi_{n}^{\prime}(x) G_{n-2 r}(x) d x & =\int_{a}^{b} q^{\prime}(x) G_{n-2 r}(x) \phi_{n}(x) d x \\
& +\int_{a}^{b} q(x) G_{n-2 r}^{\prime}(x) \phi_{n}(x) d x
\end{aligned}
$$

Since $q(x)=P_{2 r}(x) p(x)$, the second integral is zero. The other equations of (2) give us successively

$$
\begin{aligned}
\int_{a}^{b} q^{\prime}(x) G_{n-2 r}(x) \phi_{n}(x) d x & =0, \quad \int_{a}^{b} q^{\prime \prime}(x) G_{n-2 r+1}(x) \phi_{n}(x) d x=0 \\
\cdots, & \int_{a}^{b} q^{r-1}(x) G_{n-r-2}(x) \phi_{n}(x) d x=0
\end{aligned}
$$

The lemma applies to these equations and we have

$$
\begin{align*}
q(x) & =P_{2 r}(x) p(x), & & q^{\prime}(x)=P_{2 r-1}(x) p(x), \cdots \tag{6}\\
q^{r-1}(x) & =P_{r+1}(x) p(x), & & q^{r}(x)=P_{r}(x) p(x)
\end{align*}
$$

5. Determination of $p(x)$. If we eliminate $p(x)$ from the last two equations of (6), we get

$$
\begin{equation*}
q^{r}(x)=\frac{P_{r}(x)}{P_{r+1}(x)} q^{r-1}(x), \quad q^{r-1}(a)=q^{r-1}(b)=0 \tag{7}
\end{equation*}
$$

We conclude that $P_{r+1}(a)=0$. For suppose not, then $q^{r}(a)=0$, and (7) is a linear differential equation for $q^{r-1}(x)$, with coefficients analytic at $x=a$. The initial conditions make $q^{r-1}(x) \equiv 0$ (and therefore $p(x) \equiv 0$) in some neighborhood of $x=a$. But this contradicts the condition of a preceding footnote. Similarly, $P_{r+1}(b)=0$.

The same type of argument shows that for $n=1,2, \cdots, r$, $P_{r+n}(x)$ has n-fold zeros at both $x=a$ and $x=b$. Hence

$$
\begin{aligned}
P_{2 r}(x) & =k(x-a)^{r}(x-b)^{r} \\
P_{2 r-1}(x) & =c(x-a)^{r-1}(x-b)^{r-1}(l x+m)
\end{aligned}
$$

The first two equations of (6) now yield

$$
\begin{aligned}
\frac{q^{\prime}(x)}{q(x)} & =\frac{c(x-a)^{r-1}(x-b)^{r-1}(l x+m)}{k(x-a)^{r}(x-b)^{r}}=\frac{\alpha}{x-a}-\frac{\beta}{b-x} \\
q(x) & =K(x-a)^{\alpha}(b-x)^{\beta}, \quad p(x)=C(x-a)^{\alpha-r}(b-x)^{\beta-r}
\end{aligned}
$$

Since this is the weight function of Jacobi polynomials, our proposition is proved.

[^0]: * Presented to the Society, April 11, 1936.
 \dagger There is no restriction in assuming (as we do) that if α, β are any two numbers, $a<\alpha<b<\beta$, then $p(x) \neq 0$ almost everywhere in $(a, \alpha) ; p(x) \neq 0$, almost everywhere in (β, b).
 $\ddagger \mathrm{W}$. Hahn, Über die Jacobischen Polynome und zwei verwandte Polynomklassen, Mathematische Zeitschrift, vol. 39 (1935), pp. 634-638. H. L. Krall, On derivatives of orthogonal polynomials, this Bulletin, vol. 42 (1936), pp. 423428.
 § See Krall, loc. cit.

