$\exp (n W), n$ any integer. Then N is a discrete subgroup of the central of G, and so (see [1], p. 12) G / N is a Lie group locally topologically isomorphic with G.

But the homomorphism $G \rightarrow G / N$ carries S_{3} into S_{3} / N, which is simply isomorphic with $G_{3} / N=G_{3}{ }^{*}$. This and the corollary to Theorem 1 complete the proof.
E. Cartan [5] has shown that the universal covering group of the group of projective transformations of the line is topologically isomorphic in the large with no linear group.

BIBLIOGRAPHY

[1] E. Cartan, Théorie des groupes finis et continus et l'analysis situs, Mémorial des Sciences Mathématiques, no. 42, 1930.
[2] L. P. Eisenhart, Continuous Groups of Transformations, 1933.
[3] W. Mayer and T. Y. Thomas, Foundations of the theory of continuous groups, Annals of Mathematics, vol. 36 (1935), pp. 770-822.
[4] A. Speiser, Gruppentheorie, 2d ed., 1927.
[5] La Topologie des Groupes de Lie, Paris, 1936, p. 18.
Society of Fellows, Harvard University

CHARACTERISTICS OF BIRATIONAL TRANSFORMS IN S_{r}

BY в. C. WONG

1. Introduction. Consider a k-dimensional variety, V_{k}^{n}, of order n in an r-space, S_{r}. Let us project V_{k}^{n} from a general ($r-k-t-1$)-space of S_{r} upon a general $(k+t)$-space of S_{r} and denote the projection by ${ }_{t} V_{k}^{n}$. We are supposing that $1 \leqq t \leqq k$. Then upon ${ }_{t} V_{k}^{n}$ lies a double variety, D_{k-t}, of dimension $k-t$ and order b_{t} and upon D_{k-t} lies a pinch variety, W_{k-t-1}, of dimension $k-t-1$ and order j_{t+1}. Since the symbol W_{-1} is without meaning, we thus obtain $2 k-1$ characteristics $b_{1}, b_{2}, \cdots, b_{k}$, $j_{2}, j_{3}, \cdots, j_{k}$. The symbol j_{1} has a meaning which will be explained subsequently.

Now let a general $(r-k+q-2)$-space, $S_{r-k+q-2},(1 \leqq q \leqq k)$, be given in S_{r}. Through this $S_{r-k+q-2}$ pass ∞^{k-q+1} primes of S_{r} and ∞^{k-q} of these are tangent to V_{k}^{n}. The points of contact form a $(k-q)$-dimensional variety, U_{k-q}. Denote its order by m_{q}. Thus
we obtain k further characteristics $m_{1}, m_{2}, \cdots, m_{k}$. If we project V_{k}^{n} upon a $(k+1)$-space, S_{k+1}, of S_{r}, we see that m_{q} is the class of the V_{q}^{n} in which a $(q+1)$-space of S_{k+1} meets the projected variety. We also say that m_{q} is the class of the q-dimensional variety in which an $(r-k+q)$-space of S_{r} meets V_{k}^{n}.

In the case where V_{k}^{n} is the complete intersection of $r-k$ general primals, of orders $n_{1}, n_{2}, \cdots, n_{r-k}$, respectively, in S_{r}, the values of j_{t}, b_{t}, m_{q} are known* and they are

$$
\begin{align*}
j_{t}= & n_{1} n_{2} \cdots n_{r-k} \sum\left(n_{1}-1\right)\left(n_{2}-1\right) \cdots\left(n_{t}-1\right), \tag{I}\\
b_{t}= & \frac{1}{2} n_{1} n_{2} \cdots n_{r-k}\left[n_{1} n_{2} \cdots n_{r-k}-1-\sum\left(n_{1}-1\right)\right. \tag{II}\\
& -\sum\left(n_{1}-1\right)\left(n_{2}-1\right)-\cdots \\
& \left.-\sum\left(n_{1}-1\right)\left(n_{2}-1\right) \cdots\left(n_{t}-1\right)\right] \\
= & \frac{1}{2} n_{1} n_{2} \cdots n_{r-k}\left[\sum\left(n_{1}-1\right)\left(n_{2}-1\right) \cdots\left(n_{t+1}-1\right)\right. \\
& +\sum\left(n_{1}-1\right)\left(n_{2}-1\right) \cdots\left(n_{t+2}-1\right)+\cdots \\
& \left.+\sum\left(n_{1}-1\right)\left(n_{2}-1\right) \cdots\left(n_{r-k}-1\right)\right],
\end{align*}
$$

(III) $m_{q}=n_{1} n_{2} \cdots n_{r-k} \sum_{h} \sum\left(n_{1}-1\right)^{h_{1}}\left(n_{2}-1\right)^{h_{2}} \cdots\left(n_{q}-1\right)^{h_{q}}$,
where

$$
h=h_{1}+h_{2}+\cdots+h_{q}=q
$$

We shall refer to these values later.
In this paper we propose to determine the values of the same characteristics for the variety V_{k}^{n} in S_{r} which we consider as the birational transform of a k-dimensional variety, say Φ_{k}^{ν}, of order ν in a ρ-space, Σ_{ρ}, for $\rho<r$. We confine ourselves to the case where Φ_{k}^{ν} is the complete intersection of $\rho-k$ general primals of Σ_{ρ}, of respective orders $\nu_{1}, \nu_{2}, \cdots, \nu_{\rho-k}$, given by the equations

$$
\begin{equation*}
F^{(1)}=0, F^{(2)}=0, \cdots, F^{(\rho-k)}=0, \tag{1}
\end{equation*}
$$

[^0]where $F^{(i)}$ is a homogeneous function of degree ν_{i} in the variables $\xi_{0}, \xi_{1}, \cdots, \xi_{\rho}$. The order of Φ_{k}^{ν} is $\nu=\nu_{1} \nu_{2} \cdots \nu_{\rho-k}$. The corresponding characteristics $\eta_{t}, \beta_{t}, \mu_{q}$ of Φ_{k}^{ν} are given by (I), (II), (III) if we replace in the right-hand members r by ρ and n_{i} by ν_{i}.

We suppose that the transformation of Φ_{k}^{ν} into V_{k}^{n} is accomplished by means of a general linear ∞^{r}-system, $|\psi|$, without base varieties of any kind, of ($k-1$)-dimensional varieties of order νN, and that $|\psi|$ is the intersection of Φ_{k}^{ν} and a general linear $\infty^{r^{-} \text {-system, } \mid}|\phi|$, of primals of order N, none passing through Φ_{k}^{ν}, given by the equation

$$
\begin{equation*}
a_{0} \phi^{(0)}+a_{1} \phi^{(1)}+\cdots+a_{r} \phi^{(r)}=0 \tag{2}
\end{equation*}
$$

the ϕ 's being linearly independent homogeneous polynomials of degree N in the $(\rho+1) \quad \xi$'s. Then, the order of V_{k}^{n} is $n=\nu N^{k}=\nu_{1} \nu_{2} \cdots \nu_{\rho-k} N^{k}$. The coordinates of the points on V_{k}^{n} are given by

$$
\begin{gathered}
\sigma x_{0}=\phi^{(0)}\left(\xi_{0}, \xi_{1}, \cdots, \xi_{\rho}\right), \quad \sigma x_{1}=\phi^{(1)}\left(\xi_{0}, \xi_{1}, \cdots, \xi_{\rho}\right) \\
\cdots, \quad \sigma x_{r}=\phi^{(r)}\left(\xi_{0}, \xi_{1}, \cdots, \xi_{\rho}\right)
\end{gathered}
$$

where the ξ 's satisfy equations (1).
It is to be noted that an h-dimensional locus of order l on Φ_{k}^{ν} goes into an h-dimensional locus of order $l N^{h}$ on V_{k}^{n}. For $h=k, \Phi_{k}^{\nu}$ goes into V_{k}^{n}, where $n=\nu N^{k}$.

We shall first, in §2, derive a general relation connecting the b 's and the j 's for a general variety which has no extraordinary singular points. The determination of the values of the m 's of our variety V_{k}^{n} will be given in $\S 3$ and the determination of those of the j 's in $\S 4$. The values of the b 's will then be obtained with the aid of the relation derived in §2. Incidentally, we find it interesting to express the m 's and j 's in terms of the μ 's and η 's, respectively, of Φ_{k}^{ν}.
2. The Relation between the b's and the j 's. Let C^{l} be a curve of order l, in a space of dimension greater than 2 , whose points are paired in an (irrational) involution I_{2}. Suppose that C^{l} has d actual nodes at each of which two corresponding points of I_{2} coincide but lie on different branches of the curve. If i denotes the number of simple points of C^{l} at each of which two corresponding points of I_{2} become united, the order of the ruled sur-
face, which may be a cone, whose generators are lines joining corresponding points of the involution is, as is well known,

$$
R=(2 l-i-2 d) / 2
$$

Now consider a general k-dimensional variety V_{k}, of any order n, without extraordinary singular points, in S_{r} and let it be intersected by a general $(r-k+t)$-space of S_{r} in a V_{t}. If we project V_{t} upon a ($2 t-1$)-space, $S_{2 t-1}$, we see that the projection ${ }_{t-1} V_{t}$ has a double curve D_{1} of order b_{t-1} and j_{t} pinch points. This ${ }_{t-1} V_{t}$ may certainly be regarded as the projection of a ${ }_{t} V_{t}$ in a (2t)-space, $S_{2 t}$, the ${ }_{t} V_{t}$ being assumed to be a projection of V_{t}. Let Z be the point, taken in a general position of $S_{2 t}$, from which ${ }_{t} V_{t}$ is projected into ${ }_{t-1} V_{t}$ in $S_{2 t-1}$. There are ∞^{1} lines through Z meeting ${ }_{t} V_{t}$ in two distinct points and the locus of these lines is a ruled surface, in fact a cone, of order b_{t-1}. This cone meets ${ }_{t} V_{t}$ in a curve c of order $2 b_{t-1}$, of which the double curve D_{1} on ${ }_{t-1} V_{t}$ is the projection. The curve c has b_{t} actual nodes which are the improper double points of V_{t}. There are j_{t} elements of the cone tangent to ${ }_{t} V_{t}$ and also to c. The projections of the points of contact are the pinch points on ${ }_{t-1} V_{t}$. Now on c is an involution of pairs of points set up by the elements of the cone. There are b_{t} points each of which is the union of two corresponding points on different branches of the curve and j_{t} points each of which is the union of two corresponding points on a simple branch of the curve. Putting $R=b_{t-1}, l=2 b_{t-1}, i=j_{t}, d=b_{t}$ in the relation of the paragraph just preceding, we have the desired relation $b_{t-1}=\left(4 b_{t-1}-j_{t}-2 b_{t}\right) / 2$, or

$$
\begin{equation*}
2 b_{t-2}=j_{t}+2 b_{t} \tag{3}
\end{equation*}
$$

By letting $t=1,2, \cdots, k$, successively, we obtain

$$
2 b_{0}=j_{1}+2 b_{1}, \quad 2 b_{1}=j_{2}+2 b_{2}, \cdots, \quad 2 b_{k-1}=j_{k}+2 b_{k}
$$

As we shall see presently, $b_{0}=n(n-1) / 2$ and j_{1} is identical with the class m_{1} of a plane section of the projection ${ }_{1} V_{k}$ in a $(k+1)$ space. The relation (3) may be replaced by the relation

$$
\begin{equation*}
2 b_{s}-2 b_{t}=j_{s+1}+j_{s+2}+\cdots+j_{t}, \quad(s>t) \tag{4}
\end{equation*}
$$

Note that this relation, or relation (3), is satisfied by (I) and (II).
3. The Determination of the m's. Returning to the V_{k}^{n} which is the birational transform of $\Phi_{k}{ }^{\nu}$ in Σ_{ρ}, we see at once that $m_{q},(1 \leqq q \leqq k)$, is the order of the variety U_{k-q} on V_{k}^{n} which has for image on Φ_{k}^{ν} the complete intersection Θ_{k-q} of Φ_{k}^{ν} and the Jacobian variety $\omega_{\rho-q}$ of the $\rho-k$ primals, given by (1), intersecting in Φ_{k}^{ν}, and any $k-q+2$ independent primals of the system $|\phi|$, say $\phi^{(1)}=0, \phi^{(2)}=0, \cdots, \phi^{(k-q+2)}=0 . \Theta_{k-q}$ is the locus of the points of contact between Φ_{k}^{ν} and the ∞^{k-q} primals of the ∞^{k-q+1}-system determined by the $k-q+2$ primals just mentioned which are tangent to Φ_{k}^{ν}. The conditions of contact are given by

$$
\left\|\begin{array}{|lll|}
F_{0}^{(1)} & F_{1}^{(1)} & \cdots F_{\rho}^{(1)} \\
\cdot & \cdot & \cdots \\
F_{0}^{(\rho-k)} & F_{1}^{(\rho-k)} & \cdots F_{\rho}^{(\rho-k)} \\
\phi_{0}^{(1)} & \phi_{1}^{(1)} & \cdots \phi_{\rho}^{(1)} \\
\cdot & \cdot & \cdots \\
\phi_{0}^{(k-q+2)} & \phi_{1}^{(k-q+2)} & \cdots \phi_{\rho}^{(k-q+2)}
\end{array}\right\|=0,
$$

where $F_{i}{ }^{(h)}, \phi_{i}{ }^{(h)}$ are written in place of $\partial F^{(h)} / \partial \xi_{i}, \partial \phi^{(h)} / \partial \xi_{i}$, respectively. This equality represents the Jacobian $\omega_{\rho-q}$. The matrix being of $\rho+1$ columns and $\rho-q+2$ rows, the order of $\omega_{\rho-q}$ is*

$$
\begin{align*}
H_{q}= & \sum_{i=0}^{q}\binom{k+1-i}{q-i}(N-1)^{q-i} \\
& \cdot \sum_{i} \sum\left(\nu_{1}-1\right)^{h_{1}\left(\nu_{2}-1\right)^{h_{2}} \cdots\left(\nu_{i}-1\right)^{h_{i}}} \tag{5}
\end{align*}
$$

where

$$
h_{1}+h_{2}+\cdots+h_{i}=i
$$

Then the order of Θ_{k-q} is $\nu_{1} \nu_{2} \cdots \nu_{\rho-k} H_{q}$ and therefore the order of U_{k-q} on V_{k}^{n} which is the transform of Θ_{k-q} is

$$
\begin{equation*}
m_{q}=\nu_{1} \nu_{2} \cdots \nu_{\rho-k} N^{k-q} H_{q} . \tag{6}
\end{equation*}
$$

It is of interest to express m_{q} in terms of the μ 's belonging to $\Phi_{k}{ }^{\nu}$. The various values of the μ 's are obtained from (III) by changing r to ρ and n_{i} to ν_{i}. By taking account of (5), we have, from (6), writing μ_{0} in place of ν or $\nu_{1} \nu_{2} \cdots \nu_{\rho-k}$,

[^1]\[

$$
\begin{aligned}
m_{q}= & N^{k-q} \sum_{i=0}^{q}\binom{k+1-i}{q-i}(N-1)^{q-i} \mu_{i} \\
= & N^{k-q}\left[\binom{k+1}{q}(N-1)^{q} \mu_{0}\right. \\
& \left.\quad+\binom{k}{q-1}(N-1)^{q-1} \mu_{1}+\cdots+\mu_{q}\right] .
\end{aligned}
$$
\]

4. The Determination of the j 's and the b's. The projection ${ }_{t-1} V_{k}^{n}$, in a $(k+t-1)$-space of S_{r}, of V_{k}^{n} has a pinch variety W_{k-t} of order j_{t}. This W_{k-t} has for image on Φ_{k}^{ν} the complete intersection of Φ_{k}^{ν} and the variety $\pi_{\rho-t}$ common to all the primals each of which is the Jacobian of $\rho+1$ of the following $\rho+t$ primals:

$$
\begin{array}{llll}
F^{(1)}=0, & F^{(2)}=0, & \cdots, & F^{(\rho-k)}=0 \\
\phi^{(1)}=0, & \phi^{(2)}=0, & \cdots, & \phi^{(k+t)}=0
\end{array}
$$

The $k+t$ primals represented by the ϕ 's equated to zero are supposed to be independent members of the system $|\phi|$ given by (2). The equations of $\pi_{\rho-t}$ are

$$
\left\|\begin{array}{cccc}
F_{0}^{(1)} & F_{1}^{(1)} & \cdots & F_{\rho}^{(1)} \\
\cdot & \cdot & \cdot & \cdot \\
F_{0}^{(\rho-k)} & F_{1}^{(\rho-k)} & \cdots & F_{\rho}^{(\rho-k)} \\
\phi_{0}^{(1)} & \phi_{1}^{(1)} & \cdots & \phi_{\rho}^{(1)} \\
\cdot & \cdot & \cdot & \cdot \\
\phi_{0}^{(k+t)} & \phi_{1}^{(k+\ell)} & \cdots & \phi_{\rho}^{(k+t)}
\end{array}\right\|=0 .
$$

The left-hand member being a matrix of $\rho+t$ rows and $\rho+1$ columns, the order of $\pi_{\rho-t}$ is*

$$
\begin{align*}
C_{t} & =\sum_{i=0}^{t}\binom{k+t}{i}(N-1)^{i} \sum\left(\nu_{1}-1\right)\left(\nu_{2}-1\right) \cdots\left(\nu_{t-i}-1\right) \tag{7}\\
& =\sum_{i=0}^{t}\binom{k+t}{t-i}(N-1)^{t-i} \sum\left(\nu_{1}-1\right)\left(\nu_{2}-1\right) \cdots\left(\nu_{i}-1\right),
\end{align*}
$$

[^2]and the order of the intersection of Φ_{k}^{ν} and $\pi_{\rho-t}$ is νC_{t}. Therefore, the order of W_{k-t} is
\[

$$
\begin{align*}
j_{t}= & \nu N^{k-t} C_{t} \\
= & \nu_{1} \nu_{2} \cdots \nu_{\rho-k} N^{k-t} \sum_{i=0}^{t}
\end{align*}
$$ \quad\binom{k+t}{t-i}(N-1)^{t-i} .
\]

Thus, for $t=1$, we have

$$
j_{1}=\nu_{1} \nu_{2} \cdots \nu_{\rho-k} N^{k-1}\left[(k+1)(N-1)+\sum\left(\nu_{1}-1\right)\right]=m_{1}
$$

Now in terms of the η 's of $\Phi_{k}{ }^{\nu}$ we have, from (I) and (8),

$$
\begin{aligned}
& j_{t}=N^{k-t} \sum_{i=0}^{t}\binom{k+t}{t-i}(N-1)^{t-i} \eta_{i} \\
& =N^{k-t}\left[\binom{k+t}{t}(N-1)^{t} \eta_{0}+\binom{k+t}{t-1}(N-1)^{t-1} \eta_{1}+\cdots\right. \\
& \left.+\binom{k+t}{1}(N-1) \eta_{t-1}+\eta_{t}\right],
\end{aligned}
$$

where $\eta_{0}=\nu=\nu_{1} \nu_{2} \cdots \nu_{\rho-k}$.
To determine the b 's we make use of the relation (3) or (4) of §2. A little calculation yields

$$
b_{t}=\frac{1}{2} \nu\left[\nu N^{2 k}-\sum_{h=0}^{t} N^{k-h} C_{h}\right],
$$

where C_{h} is given by (7) if we replace in it t by h. Since any ($k-t$)-dimensional variety of order l on $\Phi_{k^{\nu}}$ goes into a ($k-t$)dimensional variety of order $l N^{k-t}$ on V_{k}^{n}, we see that

$$
\frac{2 b_{t}}{N^{k-t}}=\nu^{2} N^{k+t}-\nu \sum_{h=0}^{t} N^{t-h} C_{h}
$$

is the order of the image on $\Phi_{k}{ }^{v}$ of the double variety D_{k-t} on the projection ${ }_{t} V_{k}^{n}$ in a $(k+t)$-space.

The University of California

[^0]: * C. Segre, Mehrdimensionale Räume, Encyklopädie der Mathematischen Wissenschaften, III C7, pp. 944-945. Also B. C. Wong, On certain characteristics of k-dimensional varieties in r-space, this Bulletin, vol. 38 (1932), pp. 725730.

[^1]: * Salmon, Modern Higher Algebra, 4th ed., Lesson 19.

[^2]: * Salmon, loc. cit.

