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GENERALIZED JACOBI POLYNOMIALS
D. N. SEN AND V. RANGACHARIAR

1. Introduction. The differential equation

d? d
32,— (x+al)—y+ {n—n(n-— 1)a}y= 0,
dx

(ax® 4 Bx + v) —
dx

where # is a positive integer, has polynomial solutions y, of de-
gree n. Some properties of these polynomials have been obtained
by Brenke* and by Lawton.t The object of this paper is to de-
rive fresh properties and in particular to study the zeros of
these polynomials. Brenke proved that

1
By = ~p—D”{pP”} ’

where

PEax2+Bx+'YE—a(x_d)(b—x): (d<b),

1
p=—— (v — 4 — 9,
o
A = a+ a _ b+ ay
T alb —a) T e —a)

and k%, is the coefficient of x* in the right-hand side. It has also
been proved by him that if 4 and B are positive, the following
recurrence formula holds good.

(A) Yn = (an + x)yn-—l - bnyn—2;

where

Cn2_2 1 b
by = and —-2-=f py.tdx,

City Cr

b
@n = — Ci-_1kn_1, where k,= f Xpy.idw.
a

* This Bulletin, vol. 36 (1930).
1 This Bulletin, vol. 38 (1932).
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The values of 4 and B hax;e been assumed to be positive for the
existence of the integral [ pdx.

2. Values of y. at a and b.

1 (.._. Ol)""l
hyn = — D"(pP") = ————— D*{(x — a)"+4=1(b — x)"+B-1}
p P

= (— a)*(x — @) A(b — «)"BD*{(x — a)"*H41(h — x)v+B-1}
= (— a)"(x — a)t4(b — x)-B
[ % (— 1)Cp S, (x — a)™+41(b — x)n—r+B—1:|’
where
=(+d—DE+A—2) A+
X#n+B—-Dn+B—2)-(n+B—r).

Nowhy,=a"(2n+A+B—-2)2n+A+B—-3) - - - (n+4+B—-1).
Hence

(n+A—1)(n+A4-2)--- A(b—a)*
2n+A+B—2)2n+A+B—3) - - - (n+4+B—-1)’
(n+B—1)(n+B—2) - - - B(b—a)"
2n+A+B—2)2n+A+B—3) - - - (n+A+B—1) "

3. Value of b, in formula (A).

‘[ﬂwkdx-——lf D%ppw{ Dk@Pn}dx

_ = l)kf Pkpk{1 Dk(ppk)}dx
p

yn(d)=(—1)n

yu(B) =

hk a
_ (—kl)’“k!fbppkdx
k a
(— ;)kk| (_ Ol) k—1 f (x — a) k+A— 1(b —_ x)k-{—B—ldx
k
(= 1)kk! I'(k+A)T(k+B)

(—a)t-1 (b— a)2k+4+B-1,
hy I(2k+A+B)
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Hence

b
f,,py,?_ldx

b=t
Sroydsda
—u Pn_s (n—1) (n+4—-2)(n+B-2) (b—a)?
Prns (2n+A4+B—3)(2n+A+B—4)
— (n—1) (n+A4—-2)(n+B—2)(n+A+B—3) (b—a)2.

(2n+A+B—23)(2n+A+B—4)*(2n+A+B—5)

4. Relation among v, , Vn, Yat+1. From §2

r=n

hoyn = (— a)”z (— DS,Crr(x — a)r(b — x)m .

=0

Hence

By = (= Q"3 (= 1)78,Co {#(x — a)=1(6 — &)

— (0 = (x = )@ — x)i}.
The coefficient
(x —a)(db — x)r—rt
on the right-hand side under summation is
(= D)HCorpi(r + DS + (= 1)H(n — 7)Co Sk
= (= )"nCo1 (S + Sep1}
= (= D*Coif@+nN+@+B-—r—D}n+4-1)
e dAr+ )X +B—-1)---(n+ B—7)
= (—1)*uC,1,(n+A4+B—-1)n+4-1)
A+ r+ )X +B—-1)---(n+ B —r).
Therefore
Baya = — (—a)"n(n+4 + B — 1)
X T A= DCunsr A=) A+ )
X(n+B—1)--- (n+B—r) X (x—a)(d— a)1}.

Now
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{(n+ )0 — %) — (n+ B)(% — a)} huya
={(n+ A0 —a) —(n+ B)x—a}(—a)
. i (— 1DS,Crr(x — a)(b — x).

The coefficient of (x—a)™1(b—x)* " on the right-hand side is

(= &)"(— D™ (n + B)CunSy + (n + A)Cors1Sri1}
= (= a)*(— D+ {(n + B)(4 + r)Ca,

+ 4+ A)(n+ B —r — 1)Cny1}
Xn+d4—-1)---A+r+1)
Xnm+B—1)---(n+ B—r).

The expression within the braces is
(n + B)("‘ + A4 —n-— r)Cn.r + (" + A)("’ + B—r + I)Cn.r-}—l
= (n + A)(ﬂ + B)(Cn,r + Cn,r+1) - ”Cn—-l,r<2n + 4 + -B)
= (n + A)(” + B)Cn+1,r+1 - ncn——l,r(zn + A + B)-
Hence
{(n+ 4)b — %) — (0 + B)(x — @)} huyn
n+1
= (—a)" 2 (= D) Crprsn+A)n+ A4 —1)- - (A +7)
0
Xm+B)---n+B—r+1) X (x— a)(d— x)»rH
+ (— a)*u(2n + A + B)
D C A= 1) A1)
0

Xmn+B—-1)---(n+ B —r)(x—a)y+t(h — x)~

hn+1

Yor1 + (— a)y(2n + A + B)

'ﬂi(— l)rcn—l,r(”+A—1)(A+f+1)

Xn+B—1)---(n+ B—r)(x— a)t (b — x)r.
Also
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(x — a)(b — D)oy = —n(n+ A4+ B — 1)(— a)"

(= D) Crgp(n+ A —1) - (A 47+ 1)

0
Xm+B—1) - (n+ B—r)(x— a)t(b— x)~.

Hence

{(n+ 4)® — %) — (n + B)(x — @)} hayn

Rn1 2n+ 4+ B ,
i Ynt1 — m (x — a)(b — %) haya .
Therefore
(x—a)b—x)y, = —2n+ A+ B— 1)y
n+A4+4+B-—1
_— B)(x — a) — A)(b — e
2n+A+B{(%+)(x a) — (n+ A)(b — 2)}y

5. Results Valid for A and B Negative. If 4 and B be assumed
to be negative, the results of §§2 and 4 obviously continue to
hold good. The recurrence formula (A), being an identity and
¥ 's being polynomials, will still be true and the form for 4, ob-
tained in §3 will also hold good.

6. Roots of y,=0. Lawton and Fujiwara proved that if 4 and
B be negative or zero, and p, ¢ positive integers such that
0<A+p=1,0=B+g=1, the number of roots of y,=0 inside
(a, b) is n—p—q, m=p+q+1). We shall derive the result by
arguments based on methods of Sturm’s theorem in the theory
of equations and get fresh results by this consideration. The set
of functions ¥n, Ya—3, - * -, ¥p+o is taken for this purpose, it being
proved in the next section that y,, ,=0 has no roots inside (a, b).

7. No roots of ¥p1q=0 inside (a, b). When x lies between
a and b, (x—a) and (b—x) are both positive. The coefficient of
(x—a)(b—x)»" on the right-hand side of A,y, in §2 is
(—a)*Cp »(—1)S,. When n=p-+gq, this coefficient becomes
(= )P Cppgr(— D+ g+4—-1)--- (4 +7)

Xp+q+B—1)--XG+g+B—n.

If r=p—s, where s is positive or zero,
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G+ag+A—1--p+4—-1--U+p—ys)

has s negative factors and in (p+¢g+B—1) - - (¢g+B+s) all
the factors are positive. Hence in this case the sign of (—1)"S,
is that of (—1)2. If, however, r=p-¢, where ¢ is positive, all
the factors in (p+qg+4—1) - - - (A+p-+¢) are positive and in
(p+q+B—1) - - - (g+B—1) - - - (¢g+B—1t) there are ¢ negative
factors. Hence again the sign of (—1)"S, is that of (—1)». It
follows that 7,4y p+e cannot vanish within (e, b) and has the
same sign as that of (—a)?t¢(—1)?. Now

horo = (+ )" (2p + 29+ A+ B —2)
o (p+g+ A+ B(p+g+ 4+ B-1).

Hence the sign of y,4, is that of (—1)2(p+qg+4+B—1), that
is, the sign of y,., within (e, b) is that of (—1)2or (—1)2 1 ac-
cording as the sum of the fractional parts of —4 and —Bis <1
or >1. The case in which the sum =1 follows by continuity.*

8. Changes in Sign. In passing through a root 6 of y,=0 a
change of sign will be lost or gained between ¥, and y,—1 accord-
ing as v, (6) and y,-1(0) have like or unlike signs, that is, ac-
cording as b,41 is positive or negative (§4 and (A)). By formula
(A) when y;_1=0, yi/yr—2 will have sign opposite to that of b.
If b, be positive, no change of sign will be lost or gained in passing
through a root é of y,_1=0; if on the other hand b, be negative,
two changes of sign will be lost or gained according as yi/_1(8)
and y;_(8) are of the same or opposite sign. The relation of §4
enables us to deal with the different possibilities and an ex-
amination of the changes of sign lost enables us to determine
the number of roots of y, =0 within (e, b).

9. Sign of b, for Different Values of n. For studying the zeros
of y,, (n=p+q), it is enough to consider the sign of b, for
n=p+qg+2. All the factors in b, except n+A4+B—3 are evi-
dently positive. This factor is also positive for n=p+q+2 if
the sum of the fractional parts of —4 and —B be less than
unity, but if this sum exceeds unity, then b, is negative for
n=p-+q+2, and positive for subsequent values of #.

* This re-statement is made to guard against the possibility that we may
have hp.q=0 in the fraction (—a)?*1(—1)?/hp,q.
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10. Sum of Fractional Parts <1. Thus if the sum of the frac-
tional parts be <1, a change of sign will be lost in passing
through a root of y,=0 and no change of sign will be lost or
gained for a root of any of the intermediate functions. Also from
§2, it is evident that at & the functions are of the same sign and
at a consecutive ones are of opposite signs. Hence the number
of roots of ¥, =0 between ¢ and b will be n—p—gq, (n=p+q).

11. Sum of Fractional Parts >1. If, on the other hand, the
sum of the fractional parts >1, at x =5 the signs of y,., and
Yp+qt+1 are opposite and there will be continuation of sign for
the subsequent functions; whereas at @, Y4, and ¥, 441 will be
of the same sign and then there will be variation of sign at each
stage subsequently. Hence the number of changes of sign lost
will be #—p—g—2. The equation y,44+1=0 will evidently have
only one root in (e, b). In passing through this root there will
be two gains as by, 442 is negative in this case. In passing through
arootof y,=0, (n=p+q-+2), there will be aloss of sign between
y. and y,_; and there will be no loss or gain for a root of any
yx=0, (p+qg+2=k=n—1). Hence the number of roots of y,=0
will exceed by 2 the number of changes of sign lost, that is, it
will be n—p—¢q, m=p+¢q). The result of Lawton is extended
by our method to the case # =p--q.

12. Application of Sturm’s Method. Sturm’s method may be
applied for the ranges (— 0, @) and (b, ) as well. In particular
we shall show that the number of roots of the equation y,» =0
and vy, =0, where n’'>n'=[— (4 +B)+3]=mn,, is the same in
either of these ranges, [x] denoting the integral part of x. For
studying such a range it is clear that we cannot stop at ¥,iq,
but we have to take the whole set of functions down to y,. Let
us take the sets yo, y1, - - -, ¥»» and yo, ¥1, * + -, Yurr. In the first
instance, the number of changes of sign in passing through
(— 0, a) will be the same for the two sets. Also b, is positive
for n=ne. Hence in the second set no change is contributed for
passing through a root of ¥, =0, y,.41=0, - - -, y.,_1 =0, which
come as intermediate functions. Again the nature of the change
for a root of the last function in the two cases will be the same,
for yn:(0") /yn—1(8") and 3/ (8"") /yar—1(8"") are of the same sign
[y () /yn—1(8) is negative in (— o, a) for n=n,]. Now in the
first set the number of losses is due to (1) the roots of some inter-
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mediate functions and (2) the roots of y,- =0. In the second set the
contribution due to (1) persists. By the introduction of the ad-
ditional functions in the second set, the change contributed by a
root of y,-=0 in the first set is transferred to a root of y,»=0
in the second set. Also no change arises for a root of y, =0,
Yurb1=0, « -+, ¥,-,_1=0. Since the total number of losses is the
same in the two cases, the conclusion will be that the number of
roots for y,,=0 and ¥,=0 in the range (— %, a) will be the
same; similarly for the range (b, ®). Also in (a, ) the num-
bers of roots of v, =0 and y,»=0 are ' —p—q and »'' —p—q.
Hence we conclude that the number of imaginary roots of
Y. =0 and v, =0 will be the same for '’ >n’ = n,.

ScieNCE COLLEGE,
PATNA, INDIA

NOTE ON THE EXISTENCE OF AN »TH
DERIVATIVE DEFINED BY MEANS
OF A SINGLE LIMIT

BY NORMAN MILLER

The nth derivative of a function f(x) may be defined without
the use of derivatives of lower order by means of the limit of a
certain quotient. Conditions necessary and sufficient for the
existence and continuity of f™(x) at a point x=a and also for
the mere existence of f™(a) have been recently given by Frank-
lin.* The purpose of the present note is to state necessary and
sufficient conditions of a somewhat more general form with
proofs which use only Rolle’s theorem and elementary proper-
ties of determinants.

Let fi(x) and ¢i(x), (4=1,2, - - - ,n+1), be functions possess-
ing derivatives of the nth order, continuous in an interval I.
Let %1, %2, * - -, X¥,41 be points of I which close down in an arbi-

trary manner on a point ¢, in the sense that

(1) lx,-—al < €, lim ¢, = 0.

k—

We shall use the notation

* This Bulletin, vol. 41 (1935), p. 573.



