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W E L L S COLLEGE 

JENSEN'S INEQUALITY* 

BY E. J. MCSHANE 

The simplest form of Jensen's inequality is that if 4>{x) is a 
convex function, and m is the arithmetic mean of Xi, • • • , xn, 
then the mean of the numbers <j>(xn) is not less than 0(m). This 
inequality can be generalized in several different ways. The 
function <j>(x) can be replaced by a convex function of several 
variables, and the arithmetic mean can be replaced by any one 
of several other means, as has been shown in various proofs. 
Since the inequality is of considerable utility, it seems worth 
while to have it established in a form which is general enough to 
cover a wide assortment of applications. 

The proofs will rest on two well known properties of convex 
sets, f If K is closed and convex and a point p is not in K, then 
p can be separated from K by a hyperplane. If K is closed and 
convex and p is a boundary point of K, there is a hyperplane of 
support of K passing through p. 

1. The Inequality in Geometric and in Analytic Form, It will 
be convenient in the following proofs to use these symbols and 
definitions : 

Rn is w-dimensional Euclidean space. Its points will be de
noted by fa, - • • , zn) or by z. Linear functions ^Z0^»' o r ^n 
will be symbolized by l(z). 

* Presented to the Society, December 31, 1936. 
t A set is convex if for every pair P, Q of points of the set the line segment 

PQ is contained in the set. 
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L is a linear class of real valued functions f(x) defined on a 
set E. I t shall be supposed have the properties: 

(la) If fiy f2 are in L and ki, k2 are real numbers, kifi+k2f2 is in 
L. 

(lb) The function defined and constantly equal to 1 on £ is 
in L. 

Mf is a linear mean defined on L, with these properties: 

(2a) ATI = 1. 

(2b) If ƒ], f2 are in L and ki, k2 are real numbers, M(k\f^+k2f2) 
= k1Mf1+k2Mf2. 

(2c) If ƒ (a) is in L and ƒ(*) ^ 0 , then Af/ ^ 0 . 

If f(x) is an n-tuple of functions (fi(x), • • • , fn(x)) of L, we 
denote by Mf the w-tuple (M/i, • • • , Mfn). From (2) we obtain 

(3) Ml(f)=l(Mf) for every function l(z) linear on i£n. 

The geometric formulation of Jensen's inequality is as fol
lows: 

THEOREM 1. Let (1) and (2) be satisfied. Let K be a closed con
vex point set in Rn. Letfi(x), • • • ,fn(x) be functions of the class L 
such that f = (fi, • • • , fn) is in Kfor all x in E. Then Mf is in K. 

Let l(z)+c = 0 be a hyperplane in Rn such that K is entirely 
to one side, say l(z)+c^0 for z in K. Then / ( / )+£ ^ 0 for all x, 
and OSM(l(f)+c) = Ml(f) + Mc = l(Mf)+c, so that Mf lies on 
the same side of the hyperplane as K. That is, no hyperplane 
separates Mf from K. This is only possible if Mf is in K. 

The more usual analytical formulation of the inequality is 
covered by the following theorem : 

THEOREM 2. Let (1) and (2) be satisfied. Let K be a closed con
vex point set in Rn, and let <j>(z) be continuous and convex* on K. 
Let fi(x)y - - • , fn(x) be functions of the class L such that f(x) 
= (fi(x)> ' ' ' 1 fn(oc)) is in Kfor all x in E, and such, moreover, 
that (t>(f(x)) is in the class L. Then <j>(Mf) is defined and 

(J) 4>(Mf)^M(j>(f). 

* We call <f> convex on K if 0(J(zi+z2) ) Si(<f>(zi) +<Kz2) ) for all zh z2 in K. 
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Denote the points (si, • • • , sn+i) of Rn+i by z1. These can 
also be denoted by (z, sn+i), where z is in i?n. Define X\ to 
be the set in Rn+i of points (z, sn+i) such that z is in X and 
2n+i^0( z) ' It is clear that Ki is closed and convex, and for all 
x in E the point (/(#), cj>(£(x)) is in JRTi. Hence by Theorem 1, 
the point (Aff, M<f>(f)) is in 2Ti; that is, Mf is in K and 
M<t>{i)^4>{Mi). 

Obviously we could weaken our hypotheses somewhat by 
omitting the requirement that 0 be continuous and assuming 
instead that the set Ki is closed and convex. This would permit 
0(z) to have infinite discontinuities on the boundary of K. 

EXAMPLES: (1) Let a(xi, • • • , xm) be a positively mono-
tonic* function of the variables (xi, • • • , xm), and let E be a set 
measurable with respect to a and such that 0<maE < <*>. Let L 
be the class of all functions f(x) which are Lebesgue-Stieltjes 
integrable with respect to a over E. Let Mf = f Efda/ f Eda. Then 
conditions (1) and (2) are satisfied. The conclusion of Theorem 2 
assumes the form 

<t>( \ fida/ I da, • • • , I fnda/ I da J 

S J*(/i, • • ' ,fn)da/ J da. 

In the next three examples requirements of convergence or 
integrability are too obvious to need statement: 

(2) The range of x is (1, • • • , m) or (1, 2, • • • ), so that / (x) is a 
(finite or infinite) sequence (&i, #2, * • * )> and Mf—^CiaJ^cu 
where c^O and 0<]^C;< oo. 

(3) The functions ƒ of L are continuous, and Mf = fEdx/fEdx. 
(4) The functions ƒ of L are Lebesgue measurable over the 

measurable set E, and Mf = ffpdx/Jpdx} where p(x)^0 and 
0<fpdx<<x>. 

(5) E is in the interval (0,1), L is the class of all bounded 
functions on E, Mf is the Banach intégrait of ƒ over (0, 1). 

(6) E is the set of all real numbers, L the class of all uni
formly almost periodic functions, Mf is the mean value of ƒ. 

* That is, a function whose mth difference is non-negative, 
t Banach, Théorie des Opérations Linéaires, p. 31. 
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(7) More generally, E is any group, L is the class of all func
tions almost periodic on E, Mf is von Neumann's* mean value 
off. 

(8) In the space (xi, x2, • • • ) of infinitely many dimensions, 
(O^Xi^ 1), E is a set of finite positive measure,f L is the class 
of functions summable over E, Mf = fEfdx/mE. 

2. Conditions for Strict Inequality. In §1 we have not men
tioned conditions for strict inequality. To investigate this ques
tion it is convenient to define negligible sets. A set ScE is 
negligible (with respect to L and M) if there exists a function ƒ 
in the class L such that 

(a) ƒ(*) ^ 0 on £ , (b) ƒ(*) > 0 on 5 , (c) Mf = 0. 

I t follows readily that every subset of a negligible set is negligi
ble, and so is every set which is the sum of a finite number of 
negligible sets. It is then easy to prove the following theorem: 

THEOREM 3. In Theorem 1, Mf is a boundary point of K only 
if all points f(x) except those corresponding to a negligible set of x 
belong to the intersection of K with one of its hyperplanes of sup
port. 

If Mf is a boundary point of K, through it there passes a 
hyperplane of support tr: l(z)+c = 0 of K\ say l(z)+c^Q for z 
in K. Let S be the set of x such that f{x) is not in the intersec
tion wK; then l(f(x))+c>0 on 5. Since l(f(x))+c^z0 for all x 
and M(l(f(x))+c) = l{Mf)+c = 0, we see that S is negligible. 

I omit the easy proof of the following theorem : 

THEOREM 4. If the set K is strictly convex, and <j> is strictly 
convex on K, then in Theorem 2 equality holds only if f%{x) = Mfi 
— const. {i = 1, • • • , n) except on a negligible set. 

I am unable to state whether the conditions ƒ* = Mf » except 
on a negligible set are sufficient as well as necessary for equality 
in Theorem 4. However, by adding a further postulate concern-

* J. von Neumann, Almost periodic functions in a group, Transactions of 
this Society, vol. 36 (1934); in particular, p. 452. 

t P. J. Daniell, Integrals in an infinite number of dimensions, Annals of 
Mathematics, (2), vol. 20 (1919), p. 281. 

B. Jessen, The theory of integration in a space of an infinite number of dimen
sions, Acta Mathematica, vol. 63 (1934), p. 249. 
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ing L and M we can establish this, even when K is not strictly 
convex. We henceforth restrict our attention to systems L, M 
such that the following condition holds: 

(4) If S is any negligible subset of E, and f(x) is any (real) 
function which vanishes on E — S, then ƒ(x) is in the class L 
and Mf = 0. 

In example (1) negligible sets are sets of measure maS = 0; 
hence condition (4) is satisfied. In example (2), a set 5 of in
tegers is negligible iî^usCi^O; in (4), S is negligible if p(x) = 0 
on almost all of S. In (8), S is negligible if mS = 0. In (3), (6), 
and (7), only the empty set is negligible. For all of these (4) 
is valid. I do not know whether example (5) satisfies (4). 

An immediate consequence of conditions (1), (2), and (4) is 
that if f(x) is any function of class L, and g(x) =f(x) except on a 
negligible set, then g(x) is in L and Mf=Mg. 

THEOREM 5. If condition (4) is satisfied, then in inequality 
(J) equality holds if and only if the following condition holds : 
For all x except at most those belonging to a negligible set S, the 
point (fi(x), • - , fn(%)) belongs to a convex subset K' of K on 
which <j){z) is linear. In particular, if<t>(z) is strictly convex* equal
ity holds if and only if f%{x) — const, except on a negligible set. 

The last statement is an immediate consequence of the first, 
for if <j> is strictly convex the only subsets Kf on which <j> is 
linear consist of single points. Suppose then that the condition 
of Theorem 5 holds; by redefining ƒ*(#) on S, it will be true that i 
is in K' for all x, without change in Mi or M(<f>(f)). On K' we 
have 4>{z)**l(z)+c; hence ikf<£(/)= M(l(f)+c)=l(Mf)+c. But 
since K' is convex, by Theorem 1 the point Mi is in K', and so 
4>(Mi)*=l(Mi)+c. Hence equality holds in the inequality (J). 

To prove the necessity of our condition we first observe that 
there may be linear relations l(i(x))+c = 0 holding for all x ex
cept those of a negligible set. We choose a maximal set of such 
linear relations; there is no loss of generality in assuming that 
these are of the form /5+i(x)— • • • =fn(x)=0 except on Si, 
where Si is negligible. Then Mf,+i= • • • =Mfn = 0. 

We now change notation. Let Rs be the space of points 
(si, • • • , z8) ; let H be the set of (zi, • • • , z8) such that 
0i , • • • , s„ 0, • • • , 0) is in K; let yp(zu • • - , * , ) =c/>(zlf • • - , * „ 

* We assume only that K is convex, not that it is strictly convex. 
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O, •• - , 0) on H; in the space R8+i of points (zx, • • • , zat zn+i) 
let Hi be the set for which (zï} • • • , za) is in H and 
Sn+i^(*i , • • • i *«). For x in 22 —Si we have (fi(x), • • • ,ƒ,(*)) 
in i J and (/i, • • • , ƒ„ ^(/ i , • • • , ƒ,)) in Hx. If equality holds in 
(ƒ), then 

W A , • • • , ƒ . ) = Mtf>(/i, • • - , ƒ . , 0, •• - , 0) = M4>(fL, • • • , fn) 

= 0(Jf/i, • • • , M/S, 0, • • • , 0) 

= V W x , • - . , AT/.), 

so the point (Mfa • • • , Mfs, M\[/(fi, • • • , ƒ,)) is a boundary 
point of Hi in i?s+i. 

By Theorem 3, for all points x of E — Si except a negligible 
set S2 the point (fi(x), • • • , ƒ,(#), ^( / i , • • • , ƒ,)) belongs 
to the intersection of Hi with a hyperplane of support ir: 
a+bi%i+ - - - +bszs+czn+i = 0. That is, except on Si+S2 the 
equation a+bifi+ • • • +bjs+c\[/{fi, • • • , fs)=0 holds. Here 
£ ^ 0 ; otherwise we would have a new linear relation between the 
fi independent of the maximal set /s+i = • • • =fn = 0. We 
may therefore suppose that c = l ; hence ir has the equation 
a+^biZi+Zn+i^O. The left member of this equation is positive 
for some points (si, • • • , z8, zn+i) of Hi, since zn+i is arbitrarily 
large. But i is a hyperplane of support, so a+£b&i+zn+i 
does not change sign on Hi; therefore a+]>2b&i+zn+i*zQ on Hi. 
For (zu • • • , zs) in H the point (*i, • • • , zay \l/(zu • • • , z,)) is 
in iJj, so that a + ^ ^ i + ^ f e •• • , 2 , ) ^ 0 o n £ Moreover, if 
Zn+i>$(zi, - • • ,s s) , then a + ^ & ^ i + s w + i > 0 . Hence the points of 
Hi which He in w are those of the form (zi, • • • , za, \l/(zi, • • , afi)) 
with Oi, • • • , z8) in i ? and a + ^ M i + ^ O s i , • • • , 28)=0. The 
points satisfying these conditions form the intersection irHi, 
which, being the intersection of convex sets, must be convex, as 
is also its projection H' on the space Rs. For all x in E— (Si+S2) 
the point (fi(x), • • • , ƒ,(*)» ^Gfi» ' * ' » ƒ«)) i s i n ^#1» s o t n a t 

(/i0*0> * • * » ƒ«(*)) i s *n ^ ' - If w e define i£ ' to be the set of all 
points (zi, - • • , za, 0, • • • , 0) with (zx, • • • , z8) in UT', then X"' is 
convex, and for all x in E — (S1+S3) the point (fi{x), • • • ,ƒ*(#), 
0, • • - , 0) is in i£ ' . If (zi, • • • , zn) is in i£ ' then (si, • • • , z8) 
is in üT, and 

0(01, • • • , Zn) = 4>(ZU ' ' ' , Zê, 0, ' ' ' , 0) 
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This establishes the theorem. 

3. Extension to Banach Spaces. It is possible to extend Theo
rems 1,2,3, and 4 to functions f(x) assuming values in a Banach 
space B. Suppose that (1) and (2) are satisfied, and that L is a 
class of functions f(x) defined on E and assuming values in B. 
We shall assume that for every linear function l(z) on B and 
every f(x) in L the function l(f(x)) is in L. Further, we shall 
assume that there is a linear mean M defined on L such that 
for every linear function l(z) on B and every ƒ in L we have 

/(AH) = M (1(f)). 

We then find that Theorems 1, 2, 3, and 4 extend with only 
one change. The only properties of convex sets which we used 
were these : through each boundary point of a convex set there 
passes a hyperplane of support, and each point which does not 
belong to a convex set can be separated from it by a hyperplane. 
These properties have been established for convex bodies* 
(closed convex sets having interior points). Hence our theorems 
extend at once, provided that we replace the words "convex set" 
by "convex body." 

UNIVERSITY OF VIRGINIA 

* Cf. Banach, Théorie des Opérations Linéaires, p. 246. 


