NOTE ON THE CONTINUITY OF THE ERGODIC FUNCTION

BY M. H. MARTIN

1. Introduction. Let M denote a bounded point set and ϵ an arbitrarily chosen positive number. A continuous curve C is termed ϵ-ergodic to M if an arbitrary point of M lies at a distance $\leqq \epsilon$ from some point of C. Recently* I have shown that the set of continuous, rectifiable curves ϵ-ergodic to M contains a member whose length furnishes an absolute minimum for the lengths of the curves in the set. This member was called an ergodic curve of M and its length the ergodic function $\Lambda(\epsilon)$ of M. The function $\Lambda(\epsilon)$ is finite and non-negative, being equal to zero if and only if $\epsilon \geqq \rho$, where ρ is the radius of the smallest circular region containing M. In addition $\Lambda(\epsilon)$ was proved to be a monotone non-increasing function of ϵ which is always continuous on the right.

In this note it is shown that $\Lambda(\epsilon)$ is also continuous on the left (and is therefore continuous in the ordinary sense). In the original version of this paper I was able to prove this result only for a value $\epsilon_{0}(<\rho)$ of ϵ for which the set M had an ergodic curve which was an "ordinary curve" (a continuous curve which is either of class C^{\prime} or else made up of a finite number of arcs of class C^{\prime}). The general result announced above is made possible by Lemma 2 below for which I am indebted to Professor von Neumann.
2. Preliminary Lemmas. In this section we shall assemble a number of lemmas leading to the proof of the result announced in the introduction.

Lemma 1. The set M_{1} of points lying at a distance $\leqq \epsilon$ from the points of a continuous rectifiable arc of length $2 s$ joining two points A and B situated a distance $2 c(c \leqq s)$ apart lies in a region composed of the points interior to two circles described about A and B as centers with radii equal to $\epsilon+\left(2^{1 / 2} \alpha+s /(2 \epsilon)\right) s$, where $\alpha^{2}=1-c / s$.

[^0]For the proof of this lemma we first observe that a point on the rectifiable arc either lies in the interior of an ellipse E having A and B as foci and a major axis of length $2 s$, or lies on E itself. The proof of this fact is elementary and is omitted.

The set E_{ϵ} of points lying at a distance $\leqq \epsilon$ from either the points of E or the points interior to E therefore contains the set M_{1}.

The boundary of E_{ϵ} is a closed analytic curve forming part of the envelope of the family of circles of radius ϵ with centers on E.
E_{ϵ} is divided into two halves by the minor axis of E produced. Let us consider that half which contains the focus A. An elementary calculation shows that an absolute maximum R of the distances of the points of this half of E_{ϵ} from A is furnished by the two points in which the minor axis of E produced intersects the boundary of E_{ϵ}. Upon computing this distance, we find

$$
R=\left[\epsilon^{2}+2 \epsilon\left(s^{2}-c^{2}\right)^{1 / 2}+s^{2}\right]^{1 / 2} .
$$

Since $c \leqq s$ and $s-c=\alpha^{2} s$, it follows that

$$
R \leqq\left[\epsilon^{2}+2^{3 / 2} \epsilon \alpha s+s^{2}\right]^{1 / 2}<\epsilon+\left(2^{1 / 2} \alpha+\frac{s}{2 \epsilon}\right) s
$$

A circle of radius $\epsilon+\left(2^{1 / 2} \alpha+s /(2 \epsilon)\right) s$ described about A as a center accordingly contains in its interior the half of E_{ϵ} containing A. A similar circle described about B as a center will contain the remaining half of E_{ϵ} in its interior. The two circles taken together will then contain the whole of E_{ϵ} and will therefore a fortiori contain the set M_{1} in their interiors.

Lemma 2. Let

$$
C: x=x(s), \quad y=y(s), \quad 0 \leqq s \leqq L, \quad(s=\operatorname{arc} \text { length })
$$

be an open continuous rectifiable curve of length L. Let C be divided into n arcs of lengths $s_{1}{ }^{(n)}, s_{2}{ }^{(n)}, \cdots, s_{n}{ }^{(n)}$ subtending chords of lengths $c_{1}^{(n)}, c_{2}^{(n)}, \cdots, c_{n}^{(n)}$ respectively. Define the n quantities $\alpha_{1}^{(n)}, \alpha_{2}^{(n)}, \cdots, \alpha_{n}^{(n)}$ by the equations

$$
\alpha_{i}^{(n)}=\left[1-\frac{c_{i}^{(n)}}{s_{i}^{(n)}}\right]^{1 / 2}, \quad(i=1,2, \cdots, n)
$$

and then the $n+1$ quantities $\bar{\alpha}_{0}^{(n)}, \bar{\alpha}_{1}{ }^{(n)}, \cdots, \bar{\alpha}_{n}{ }^{(n)}$ by the relations

$$
\begin{aligned}
& \begin{aligned}
\bar{\alpha}_{0}^{(n)} & =\alpha_{1}^{(n)}, \quad \bar{\alpha}_{i}^{(n)}=\alpha_{i}^{(n)}+\alpha_{i+1}^{(n)} \quad \text { for } \quad i=1,2, \cdots, n-1, \\
\bar{\alpha}_{n}^{(n)} & =\alpha_{n}^{(n)} .
\end{aligned} \\
& \text { If } s_{1}^{(n)}=s_{2}^{(n)}=\cdots=s_{n}^{(n)}=L / n, \text { the arithmetic mean } \\
& \overline{\bar{\alpha}}_{n}=\frac{1}{n+1} \sum_{i=0}^{n} \bar{\alpha}_{i}^{(n)}
\end{aligned}
$$

of $\bar{\alpha}_{0}{ }^{(n)}, \bar{\alpha}_{1}{ }^{(n)}, \cdots, \bar{\alpha}_{n}{ }^{(n)}$ tends to zero as n tends to infinity.
We have

$$
\bar{\alpha}_{n}=\frac{2}{n+1} \sum_{i=1}^{n} \alpha_{i}^{(n)}<\frac{2}{n} \sum_{i=1}^{n} \alpha_{i}^{(n)}
$$

and therefore, upon substituting the values of $\alpha_{i}{ }^{(n)}$ given above and applying Schwarz's inequality.

$$
\bar{\alpha}_{n}<\frac{2}{n}\left[n \sum_{i=1}^{n}\left(1-\frac{c_{i}^{(n)}}{s_{i}^{(n)}}\right)\right]^{1 / 2}
$$

whereupon, since $s_{i}{ }^{(n)}=L / n$, it follows that

$$
\bar{\alpha}_{n}<2\left[1-\frac{\sum_{i=1}^{n} c_{i}^{(n)}}{L}\right]^{1 / 2} .
$$

Now C is rectifiable of length L. Therefore $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} c_{i}^{(n)}=L$, and consequently $\lim _{n \rightarrow \infty} \bar{\alpha}_{n}=0$.

Lemma 3. Let

$$
C: x=x(s), \quad y=y(s), \quad 0 \leqq s \leqq L
$$

be a continuous rectifiable curve of length L. Denote by C_{ϵ} the set of points lying at a distance $\leqq \epsilon$ from the points of C. There exists a sequence $\left\{C_{n}\right\}$ of continuous rectifiable curves for which, if L_{n} denotes the length of C_{n}, the following hold:
(a) $\lim L_{n}=L$,
(b) C_{n} is ϵ_{n}-ergodic to C_{ϵ} with $\epsilon_{n}<\epsilon$ and $\lim \epsilon_{n}=\epsilon$.

In proving this lemma it is convenient to take C to be an open curve, the proof permitting an immediate adaptation to the case where C is closed. Divide C up into n equal arcs each
of length L / n by inserting $n+1$ points on C. These $n+1$ points we shall denote by $0,1,2, \cdots, n$, where 0 and n denote the endpoints of C.

About a point $i,(i=0,1,2, \cdots, n)$, of the subdivision we describe two circles, one, Γ_{i}, of radius $\epsilon+\left(2^{1 / 2} \bar{\alpha}_{i}^{(n)}+L /(4 n \epsilon)\right) L /(2 n)$, the other, γ_{i}, of radius $\left(2^{1 / 2} \bar{\alpha}_{i}^{(n)}+L /(4 n \epsilon)\right) L / n$, where in each case $\bar{\alpha}_{i}^{(n)}$ denotes the quantity defined in Lemma 2.

The totality of points interior to the circles Γ_{i} constitutes a point set which we designate by M_{n}. On placing $s=L /(2 n)$ in Lemma 1, we ascertain that $C_{\epsilon} \subset M_{n}$.

A point making a complete circuit of a circle γ_{i} comes within a distance $\leqq\left(2^{1 / 2} \bar{\alpha}_{i}^{(n)}+L /(4 n \epsilon)\right) L / n$ of the points enclosed by γ_{i}, and within a distance $\leqq \epsilon-\left(2^{1 / 2} \bar{\alpha}_{i}^{(n)}+L /(4 n \epsilon)\right) L /(2 n)$ of those points outside γ_{i} but inside Γ_{i}. For sufficiently great values of n the latter of the two distances is the greater. Consequently, for sufficiently great values of n, a point making a complete circuit of γ_{i} comes within a distance $\leqq \epsilon-\left(2^{1 / 2} \bar{\alpha}_{i}^{(n)}+L /(4 n \epsilon)\right) L /(2 n) \leqq \epsilon-L^{2} /\left(8 n^{2} \epsilon\right)$ of every point interior to Γ_{i}.

Now consider a point P which traverses C from one endpoint to the other and which makes complete circuits of all the circles γ_{i} during the process. More precisely, P moves as follows: starting at the endpoint 0 of C, the point P moves along C in the direction of increasing arc length until it meets the circle γ_{0} with center 0 for the first time; P then makes a complete circuit of γ_{0}; after returning to the curve C, the point P continues along C in the direction of increasing arc length until it meets the circle γ_{1} with center 1 for the first time; P then makes a complete circuit of $\gamma_{1} ; \cdots$. At the completion of this process P coincides with n and will have traced out a continuous rectifiable curve C_{n} of length L_{n}, where

$$
L_{n}=L+\sum_{i=0}^{n} 2 \pi\left(2^{1 / 2} \bar{\alpha}_{i}^{(n)}+\frac{L}{4 n \epsilon}\right) \frac{L}{n} .
$$

On replacing $\sum_{i=0}^{n} \bar{\alpha}_{i}{ }^{(n)}$ by its value $(n+1) \overline{\bar{\alpha}}_{n}$ (introduced in Lemma 2) and carrying out the remainder of the summation, we find

$$
L_{n}=L\left[1+2 \pi \frac{n+1}{n}\left(2^{1 / 2} \overline{\bar{\alpha}}_{n}+\frac{L}{4 n \epsilon}\right)\right] .
$$

In addition the curve C_{n} is ϵ_{n}-ergodic to M_{n}, where

$$
\epsilon_{n}=\epsilon-\frac{L^{2}}{8 n^{2} \epsilon}<\epsilon
$$

The proof of the lemma is now completed by observing that, since $C_{\epsilon} \subset M_{n}$, the curve C_{n} is ϵ_{n}-ergodic to C_{ϵ}, and that

$$
\lim \epsilon_{n}=\epsilon, \quad \lim L_{n}=L
$$

the latter of which follows from Lemma 2.
3. The Continuity of $\Lambda(\epsilon)$. Let ϵ_{0} denote a fixed value of ϵ lying in the interval $0<\epsilon<\rho$ (for the definition of ρ see the introduction). Let C be an ergodic curve of M for $\epsilon=\epsilon_{0}$. Write $\Lambda\left(\epsilon_{0}\right)=L$, so that the length of C is L. Let $C_{\epsilon_{0}}$ denote the set of points lying at a distance $\leqq \epsilon_{0}$ from points of C. We note that $M \subset C_{\epsilon_{0}}$. The ergodic function $\Lambda(\epsilon)$ will now be demonstrated to be continuous on the left for $\epsilon=\epsilon_{0}$.

If $\Lambda(\epsilon)$ be discontinuous on the left for $\epsilon=\epsilon_{0}$, we shall have, since $\Lambda(\epsilon)$ is monotone non-increasing

$$
\lim \Lambda\left(\epsilon_{n}\right)=L+\delta, \quad(\delta>0)
$$

for an arbitrarily selected sequence $\left\{\epsilon_{n}\right\}$ of ϵ values for which

$$
\epsilon_{n}<\epsilon_{0}, \quad \lim \epsilon_{n}=\epsilon_{0}
$$

On the other hand, according to Lemma 3 there exists a sequence $\left\{C_{n}\right\}$ of continuous rectifiable curves such that, if L_{n} denotes the length of C_{n}, we have
(a) $\lim L_{n}=L$,
(b) C_{n} is ϵ_{n}-ergodic to $C_{\epsilon_{0}}$ (and therefore ϵ_{n}-ergodic to M) with $\epsilon_{n}<\epsilon_{0}$ and $\lim \epsilon_{n}=\epsilon_{0}$.
Therefore, since $\Lambda\left(\epsilon_{n}\right) \leqq L_{n}$, it follows that

$$
\lim \Lambda\left(\epsilon_{n}\right) \leqq L
$$

which is a contradiction to our previous result. Hence $\Lambda(\epsilon)$ is continuous on the left for $\epsilon=\epsilon_{0}$.

The case $\epsilon_{0}<\rho$ is now disposed of. There remains the case $\epsilon_{0}=\rho$ to consider. That $\Lambda(\epsilon)$ is continuous on the left in this case is trivial. The ergodic curve C shrinks to a point P, since $\Lambda(\rho)=0$, and one replaces the curve L_{n} above by a circle of radius $1 / n$ described about P as center.

[^0]: * Ergodic curves, American Journal of Mathematics, vol. 58 (1936), pp. 727734.

