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NOTE ON T H E RELATION BETWEEN CONTINUITY 
AND D E G R E E OF POLYNOMIAL APPROXI

MATION IN T H E COMPLEX DOMAIN* 

BY J. L. WALSH AND W. E. SEWELL 

1. Introduction, It is the purpose of the present note to 
establish the following theorems: 

THEOREM I. Let C be an analytic Jordan curve in the z-plane 
and let f{z) be defined in C, the closed limited point set bounded 
by C, For each n, n = l, 2, • • • , let a polynomial Pn{z) of degree 
n in z exist such that 

i . M 
(1) ƒ(*) - Pn{z) \S—— > zinC, ( X a g l , 

np+a 

where M is a constant independent of n and z, and p is a non-
negative integer. Then f {z) is analytic in C and continuous in C; 
the pth derivative f(p) (z) exists on C in the one-dimensional sense 
and satisfies the condition 

(2) | ƒ<*»(*!) ~ ƒ(*>(*,) | ^ L | Z! ~ Z2 |« I log \Zl - Z2 I K 

Zif Z2 on C, 

where j8 = 0 if a < 1, and /3 = 1 if a = 1, and where L is a constant 
independent of Zi and z%. 

THEOREM I I . Let E, with boundary C, be a closed limited point 
set in the z-plane whose complement K is connected, and is regular 
in the sense that there exists a function w~<l>(z) which maps K 
conformally but not necessarily uniformly onto \w\ > 1 so that the 
points at infinity in the two planes correspond to each other. Let 
the locus CR\ 10 (z) | = R > 1, consist of a finite number of mutually 
exterior analytic Jordan curves, Letf{z) be defined in E, and f or 
each n} n = 1, 2, • • • , let a polynomial Pn(z) of degree n in z exist 
such that 

(3) ƒ(*) - Pn(z) g — — — , zin E, O < a g 1, 
np+a+lRn 

* Presented to the Society, March 27, 1937. 
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where M is a constant independent of n and zy and p is a non-
negative integer. Then f(z) when suitably defined exterior to E is 
analytic in CR and continuous in CR ; the pth derivative f(p) (z) 
exists on CR in the one dimensional sense and satisfies the condition 

(4) | ƒ<*>(*!) - ƒ<*>(*) | ^ Z | si - *a H log I zi - z21 K 

Si, Z<L on CR, 

where /3 = 0 if a < 1, and (3=1 if a = 1, and L is a constant in
dependent of Z\ and s2. 

In these theorems the case p — 0 is not excluded : 

ƒ<*»(*) ^ zoo . 
Sewell* has already proved the slightly less general results 

that under the hypotheses of Theorems I and II the function 
f(p)(z) satisfies a Lipschitz condition! of every order a' <a on 
C and CR} respectively. 

J. Curtiss has shownf that if the boundary C of a closed 
limited point set E consists of a finite number of mutually ex
terior analytic Jordan curves, if f(z) is analytic in the interior 
points of E and continuous in E, and if f(p)(z) exists in the one-
dimensional sense on C and satisfies on C a Lipschitz condition 
of order ce, 0 < a ^ l , then there exist polynomials Pn(z) of re
spective degrees n such that (1) is valid for z in E with j3 = 0 
even for a = 1. Thus Theorem I is for 0 <a < 1 an exact converse 
of Curtiss1 s result. We show by an example that for a = l an 
exact converse is impossible. 

To be sure, Curtiss did not state his result in the above 
form, but assumed f(p)(z) continuous in E. Nevertheless the 
lighter assumption is sufficient for his purposes, because we 
prove below (Theorem III) that this lighter assumption im
plies also the heavier assumption. 

In the notation of Theorem II suppose \f(z)— Pn(z)\ ^ e n , 
z on E, n = 1, 2, • • • , where en approaches zero as n becomes in
finite. The study of the relation between en and the continuity 

* Transactions of this Society, vol. 41 (1937), pp. 84-123. 
t The function f(z) is said to satisfy a Lipschitz condition of order a, 

0 < a ^ l , on the set E if for z\ and 02 on E, we have | f(zi) —f fa) \ ÛL\Z\— 3 2 | a , 
where L is a constant independent of z\ and 22. 

% This Bulletin, vol. 42 (1936), pp. 873-878. 
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properties oîf(z) on E is called Problem a, and the study of the 
relation between en and the continuity properties of ƒ (z) on CR 
is called* Problem /3. Thus in Theorem I we have a result on 
Problem a and in Theorem H a result on Problem /?. 

The method of proof of Theorems I and II is an application of 
conformai mapping to de la Vallée Poussin's f results on trigo
nometric approximation. 

2. Proof of Theorem I. The analyticity of ƒ(z) interior to C 
and the continuity of ƒ (z) in C follow directly from inequality 
(1). We consider first C to be the unit circle: \z\ — 1. Let 

f(eie)^u(6)+iv(0)', then inequality (1) on C implies 

(5) | u(6) - pn{6) | ^ — - , | v(0) - qn{B) \ ^ 

where Pn(e
i6)=pn(0)+i(ln(Q). But pn{0) and qn(Q) are trigono

metric sums of order n and hence (de la Vallée Poussin, loc. cit., 
pp. 57 and 61-62) we have 

I u^idt) - *<*>(0,) | g £i | 0i - 0, H log | 0i - 0, | K 

| »<*>(0i) - »<»>(0,) j ^ Z2 j 0i - 02 j« j log | 0i ~ 021 j * , 

where |8 = 0 if a < 1 and /3 = 1 if a = 1. Here w(p) (0) denotes the 
pth derivative of u(6) with respect to 0; w(o)(0)=w(0). We have 

<*ƒ(*") rf </0 1 

(/e*0 dB deld tet6 

f"(eie) = ~~~ - - TTi [*'(«"(0) + *V'(0)) + («'(0) + w'(0))], 

and similarly for higher derivatives. 
Now u(k)(0), & = 0, 1, 2, • • • , £ — 1 , satisfies a Lipschitz con

dition of order 1, as does the function e~kie. Thus we have 

| f(p)(eih) _ f(P)(eih) | g Z 3 | 0i - 02 |« | log | 0i - 02 | | ' , 

which through the properties of eie implies inequality (2) for 
z on C; the proof of Theorem I is complete for C the unit circle. 

* A more general formulation of these problems is given by Sewell, loc. cit., 
along with an extensive bibliography. 

t Ch. J. de la Vallée Poussin, Leçons sur l'Approximation des Fonctions 
d'une Variable Réele, Paris, 1919; see especially Chap. IV. 
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Now let C be an arbitrary analytic Jordan curve, and let the 
function z£> = <£(s), 3 = ^(20), map C conformally onto \w\ ^ 1 ; 
the function ^f(w) is analytic and univalent in some closed 
region \w\ ^ P 0 > 1 . Inequality (1) implies 

M 
(7) \f[*(w)]-Pn[*(w)]\ £—-, \w\£l. 

flV+OL 

The polynomials P»(s) are uniformly bounded on C for all n, 
say |PnO&)| ^Mi) then by a well known theorem* we have 
(notation of Theorem II) |P»(s) | ^MxR

n for z on CR. Let TRl 

be the curve | $(z)\ = P i < P 0 , P i > l , in the js-plane. Choose 
P > 1 sö that TBl lies interior to CR. Then | P» [¥ (w) ] | ^ikfiP" 
for \w\ ^ P i . We have 

2iriJ \t\~R1 (/ - w ) / m + 1 

I w I < Pi < Po, 
where Qm(w) is the sum of the first m + 1 terms of the Taylor 
development of P» [>£(«;)] about the origin. This yields 

MiRnrm+1 

I P . [*(«0] - Qm{w) I ^ — — , \w\Sr<Rx. 
( P i - r)Rim 

Let us choose r, 1 < r < P i , and choose (this method is similar to 
that used by Curtiss, loc. cit.) m — qn where q is a positive 
integer such that R(rq/Riq) = r\ < 1 ; then we have 

(8) 1 pw[*(«o] - e ^ w ) 1 ^ - — r t , w ^ r > 1. 
P i — r 

Inequalities (7) and (8) yield 

^p+a Rl — r 

but we have n < 1, and (Mir)/(Ri — r) is a constant independent 
of nf so for suitably chosen ikf2 we have 

wp+« (qn)v+a 

* See, for example, J. L. Walsh, Interpolation and Approximation, Collo
quium Publications of this Society, vol. 20 (1935), pp. 77-78. 
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Now choose LN(w) = 0 , iV= l , 2, • • • , q — ltLqN>+h(w)=QQN'(w), 
& = 0, 1, 2, • • • , 2 - 1 , iV' = l, 2, • • • . Thus we have 

| /[*(«0] -£*(«>) I ^ - ; ~ > M ^ 1 , ^ = 1 , 2 , . - . , 

since when M9 is suitably chosen we have M2qp+a/Nip+a 

^Mz/(Ni+h)p+a, O ^ A ^ g - 1 . Hence inequality (2) is satis
fied by dpf[&(w)]/dwp in the one-dimensional sense on \w\ = 1 . 
Since ^f(w) is analytic on | w\ = 1 it follows by the method used 
above* that inequality (2) is valid for z on C; the proof of 
Theorem I is complete. 

For the f unction ƒ (w) =Er=ize;V&(&~~l) we have (\w\ S 1) 

A w* I " 1 

/(w) - E ——;r ^ E *_! &(& — 1) I k==n+i k(k — 1) 

= E ( r ^ - T ) = ~ ' »= 1,2,.-- ; 

but ƒ(w) does not satisfy a Lipschitz condition of order 1 on 
\w\ = 1 since the derivative ƒf(w) = —log (1—w) becomes in
finite as w approaches 1. Thus for a = 1 the hypothesis of The
orem I does not imply a Lipschitz condition of order a ; an exact 
converse of Curtiss's theorem for ce = 1 is impossible. 

3. Proof of Theorem I I . Let us set 

(9) ƒ(*) = Px(s) + [P2(s) - Px(s)] + [P,(«) - Pa(*)] + • • • . 

Inequality (3) implies 

i . 2Jf 
Pw+1(z) - Pn(s) g — - — - ' ^ in £ , 

flP+oc+lfcn 

, , 2Af£ 
Pn+1(2) - Pn(z) ^ — — , z in CB. 

np+<x+l 

Thus we have from equation (9) even exterior to E 

M1 _ 
I ƒ(*) -P»(«) | ^ — T - ' * i n C « ' 

* Or W. E. Sewell, this Bulletin, vol. 41 (1935), pp. 111-117; especially p. 
117. 
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Theorem II now follows from Theorem I. 
If we set for \w\ ^ JR>1 

f(w) = Z 
tli Rkk{k - 1) 

we have for \w\ g l 

f(w) - E 
WK 

tli Rhk(k - 1) 

1 

k=n+1 Rkk(k - 1) 

»f» + 1) k~Zi Rk 'R- 1 n2Rn 

Yet f(w) does not satisfy a Lipschitz condition of order 1 on 
\w\ =R since, as above, the derivative ƒ'(w) becomes infinite 
as w approaches R. As in §2 we consequently see that for a = 1 
inequality (3) does not imply a Lipschitz condition of order a. 

4. Continuity of the Derivative in C. To establish further prop
erties of the f unctions ƒ (z) of Theorems I and II , and to relate 
these theorems to the results of Curtiss, we prove a third 
theorem : 

THEOREM I I I . Let C be an analytic Jordan curve, let the func
tion f (z) be analytic interior to C and continuous in the correspond
ing closed region C, and let the pth derivative f(p) (z) exist and be 
continuous on C in the one-dimensional sense. Then f ^(z) defined 
interior to C in the usual two-dimensional sense and defined on C 
in the one-dimensional sense is continuous throughout C. 

It is sufficient to prove the theorem for the case p = 1, for 
the proof extends automatically by induction. 

Let C be the unit circle ; the more general case can be trans
formed by conformai mapping to this special case. The original 
hypothesis fulfilled for an analytic curve C implies the corre
sponding hypothesis for the unit circle, and the conclusion 
proved for the case of the unit circle implies the more general 
conclusion stated in the theorem. 

The function ƒ(z) then satisfies the conditions 

(10) f f(z)zkdz = 0, k = 0, 1, 2, • • • , 
J c 
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by Cauchy's integral theorem. If on C we set z = eid, dz = iei9dd, 
the Fourier development of ƒ (z) on C by (10) can be written 

(ID 

ƒ0) ~ Z ff»*'"* = Z Ûn2n, 
n = 0 n=0 

i r i r /(«) 
2 W e 27rj^c zn+1 

By partial integration we may write, for k = 0, 1, — 1, 2, —2, 

Hz. (12) ff(z)z"dz = [«*ƒ(*) ]c - * f ƒ(«)* 
v e *̂  c 

The first term on the right vanishes because ƒ (z) is single-valued 
and continuous on C. The Fourier development on C oî f'(z) 
is therefore by (10) and (12) 

00 00 

(13) ƒ (*) ~ 2D »a»e'<»-"' = E «anZ"-1, 
n = l n = l 

where the aw are given by (11). 
In (11) and (13) the series represent thus far only formal 

developments on C. But by the continuity of ƒ (z) in C, the 
series ^2nssaQanz

n is precisely the Taylor development of f(z) 
valid throughout the interior of C. By differentiation it follows 
that ^nsslnanz

n~l is the Taylor development of f'(z), likewise 
valid throughout the interior of C; it follows by inspection that 
this series is formally identical with the Fourier development 
(13) on Cof the derivative ƒ '(z). By the continuity oîf(z) on C, 
the second form of the development (13) is valid uniformly on C 
when summed by the method of arithmetic means; the cor
responding sequence converges uniformly in C to the function 
f'(z) on C and to the f unction ƒ ' (z) interior to C. Consequently 
the function ƒ' (z) is continuous throughout C, and the proof is 
complete. 

Various refinements of Theorem III exist and are to be pub
lished by the present writers on another occasion. 
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