
BOUNDARY VALUE PROBLEMS OF T H E 
CALCULUS OF VARIATIONS! 

BY W. T. REID 

1. Introduction. The term boundary value problem is applied 
to the question of determining whether a given system of differ­
ential equations (in general, a given system of functional equa­
tions) has one or more solutions satisfying certain prescribed 
end or boundary conditions; and, if so, the determination of the 
character of these solutions and how their character changes 
when the differential equations or boundary conditions change. 
This address is restricted to the discussion of a class of linear 
boundary problems which are intimately associated with the 
calculus of variations. These boundary value problems have 
been used in establishing sufficient conditions, especially for the 
more complicated problems of the calculus of variations. On the 
other hand, the principles and theorems of the calculus of varia­
tions have been of extreme significance in the advancement of 
the theory of such boundary value problems. In fact, the cal­
culus of variations has served to unify a certain class of bound­
ary problems much larger than that seemingly represented by 
the problem that we shall first formulate. In view of the rather 
extensive interest and study of these problems within recent 
years, it seems proper at this time to discuss the present status 
of such boundary problems, to compare the various methods 
that have been used in their treatment, and to indicate various 
questions concerning them that are as yet unsolved. 

Historically, the study of boundary problems associated with 
a second order linear differential equation dates from the time 
of Euler and D'Alembert. The first somewhat general theory of 
such problems, however, is that given by Sturm [ l ]J in his 
fundamental memoir of 1836. One of the most important ques­
tions for the more complicated boundary problems that we shall 
here consider is that of generalizing the Sturm oscillation and 

t An address delivered by invitation of the program committee at the Chi­
cago meeting of this Society, April 9, 1937. 

% Numerals in square brackets refer to the bibliography at the end of the 
paper. 
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comparison theorems for a single second order equation. Conse­
quently, I shall describe them briefly. Perhaps the most funda­
mental result of Sturm's paper is the following comparison 
theorem : 

Suppose u\ and u2 are solutions of the equations 

(Kiu{)' -GiU! = 0, 

{Kwiy -G2U2 = 0, 

where i £ i ^ i £ 2 > 0 , Gi^G2 and both equality signs do not hold 
throughout XiX2, while Ui(xi) = 0 = wi(x2). Then u2 vanishes at least 
once on X\<x<X2. 

The general oscillation theorem of Sturm's paper is concerned 
with a differential equation 

(2) (K(x, \)ufY - G(x, \)u = 0 

with two-point boundary conditions of the form 

aiÇk)u(xi) — Pi(\)K(xi, X)u'(xi) = 0, 

a2(\)u(x2) + j32(X)i£(>2, \)u'(x2) = 0. 

Under certain general conditions, which include in particu­
lar the assumption that K(x, X), G(x, X), ai(X)/j3i(X), and 
a2(X)//32(X) are monotone decreasing functions of X, it is es­
tablished that there exists an infinity of characteristic values 
Xi <X2 < • • • <Xn < • • • , and that the characteristic solution un 

corresponding to Xn has exactly n — 1 zeros on Xi<x<x2. I t is 
to be noted that (2) is the Euler equation and (3) the trans-
versality conditions associated with the functional 

[ai(X)/0i(X)M*i) + k(X)//32(X)M*2) 

+ I [K(x, X>'2 + G(x, X)u*]dx. 

By way of introduction, consider the problem of minimizing 
the integral 

/

x2 

f(x, y, yr)dx 
X\ 

in the class of arcs y of the form y — y(x) on Xi t^x ^x2 and join­
ing the two points P3 : {x\, yi) and P%: (#2, 3̂ 2). Along a minimiz­
ing arc E the second variation 
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J x2 

(fW2 + Zfryy'v + fwV2)dx 

must be non-negative in the class of arcs rj = r](x)y xiSx^oc^ 
such that 77(xi) = 0 = 77 (#2). Moreover, for the given arc E to be 
a minimizing arc it must be true t h a t / r r ^ 0 along E. If we sup­
pose that E is an extremal which is non-singular in the sense 
that along it we h a v e / r r ^ 0 , then the usual Jacobi necessary 
condition states that there exists no non-identically vanishing 
solution 77 (x) of the Jacobi equation 

( 7 ) J(tj) = (frrV' + fryVY ~ (fryV' + fyyV) = 0 

such that 7](xi) = 0 = 77(#3), and X\<x^<x2. A point x3 for which 
such a solution of (7) exists is said to determine a point 
i V [x3, y(xs)] on E conjugate to Pi. If the strengthened Jacobi 
condition is satisfied, that is, if there is no value x3 on X\ <xs^x2 

determining a point conjugate to Pi, the second variation 32 [̂ J 
may be shown to be positive for all non-identically vanishing 
arcs. 

Now consider the boundary problem 

(8) ƒ (77) + XT7 = 0 , 77O1) = 0 = rj(x2) 

involving the characteristic parameter X. A value X is called a 
characteristic value of (8) if there exists a corresponding non-
identically vanishing solution 77 of (8). One may show in a sim­
ple manner that all the characteristic values of (8) are real. If X 
is a characteristic value of (8) and 77 a corresponding solution, 
it follows by integration by parts that 

32M = X ƒ \*dx. 

Hence in order that 32=^0 it is necessary that there exist no 
negative characteristic values of this system. Clearly x% deter­
mines P 2 conjugate to Pi on E if and only if X = 0 is a character­
istic value of (8). 

I t is a consequence of Sturm's oscillation and comparison 
theorems that the Jacobi condition is equivalent to the condi­
tion that there exist no negative characteristic values of (8). 
Furthermore, if one utilizes expansion theorems for arbitrary 
functions 77 (x) satisfying the end-conditions in terms of the char-
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acteristic solutions of (8), it may be shown that the smallest 
characteristic value of this system is actually the minimum of 
32 [??] in the class of rj's satisfying the end conditions and normed 
so that fxffidx = 1. Now by the introduction of the Green's func­
tion the system (8) is seen to be equivalent to an integral equa­
tion with real symmetric kernel, and such an expansion theorem 
follows from the Hilbert-Schmidt theory of integral equations. 
Indeed, it is a ready consequence of the expansion theorem that 
each characteristic value of (8) is the minimum value of 32 [77] 
in a suitable class of arcs rj. 

It is to be emphasized that the choice of the associated bound­
ary value problem is somewhat arbitrary. In the above case one 
might equally well have considered the problem 

(9) J(v) + \k(x)ri = 0, n(xi) = 0 = *i(xi) 

where E(x) is a positive function on xix%. It is also to be noted 
that for an admissible arc rj the second variation reduces on in­
tegration by parts to 

(frr(xW2 + gV2)dx, (g = fyy - dfyr/dx) . 

If one considers the boundary problem 

(/tri')' ~ *gV = 0, rç(si) = 0 = rç(>2), 

it may be shown that 32 ̂  0 ( > 0) if and only if the smallest posi­
tive characteristic value is ^ 1 ( > 1). This form of the associated 
boundary value problem has been used by Lichtenstein for both 
simple and double integral problems of the calculus of varia­
tions. 

For the more complicated problems of the calculus of varia­
tions one may associate with the second variation a linear 
boundary problem in a manner analogous to that indicated 
above for the plane problem. Such a formulation for the gen­
eral problem of Mayer was first explicitly given by Cope [ l ] . 
Immediately there arises the question of the existence of char­
acteristic values for this problem, and the relations between 
such a boundary problem and the positiveness of the second 
variation. Can one generalize the results of the Sturmian theory 
to this more general boundary problem and thus prove the 
existence of characteristic values and properties of correspond-
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ing solutions? Actually, this order of proof has been carried 
through only recently. For boundary value problems associated 
with calculus of variations problems of varying complexity the 
existence of characteristic values has been established by vari­
ous methods. Among the methods which have been used are 
the following, and various combinations of them: (1) the use of 
comparison and approximation theorems, (2) asymptotic ex­
pressions, (3) integral equations, (4) approximating algebraic 
difference equations, (5) the theory of linear algebraic equations 
in an infinite number of variables, (6) general theorems on differ­
ential equations, (7) the minimum principle of the calculus of 
variations. 

From the standpoint of comparison and oscillation theorems 
for the more general boundary problems, it is to be remarked 
that either these theorems may first be proved and the existence 
of characteristic values deduced from them, or the existence of 
characteristic values may be first proved and these comparison 
and oscillation theorems then proved as a consequence of the ex-
tremizing properties of the characteristic values and solutions. 

2. Formulation of a General Boundary Problem. Bliss [ó] has 
emphasized the significant position of the so-called problem of 
Bolza with respect to the other problems of the calculus of varia­
tions. For brevity, the general problem of Bolza will not be 
formulated here. We shall, however, give the form of the sec­
ond variation of such a problem, and discuss associated bound­
ary value problems. The symbols rj= [rjt], ^'== [rj{ ] will denote 
the functions [ryi(x), • • • , rjn(x) ] and the set of their derivatives, 
respectively. The second variation for a problem of Bolza may 
then be written 

(10) 3,fo] s 2Q[V(xi), y(x2)] + ƒ %2œ(x, y, V
f)dx, 

where co and Q are quadratic forms in the In variables rj^rj/ and 
Vi(xi)y Vi(%2)y respectively. The associated equations of variation 
of the auxiliary differential and end-conditions of the problem 
of Bolza are of the form 

(11) $a(x, 7?, v') = $aTi(%)ri{ + &avi(%)rii = 0 , 

(a = 1, • • • , m < n)9 
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(12) ^y[vM9 7l(x2)] = Vy;iïm(Xl) + ^yiMiM == °> 

(7 = 1, ' ' ' ,p £ 2n). 

It is to be remarked that in order to write the second varia­
tion of a problem of Bolza in the form (10) it is in general neces­
sary to include in the set rj not only the variations of the 
dependent functions in the original problem of Bolza, but also 
two new functions representing the variations of the end-values ; 
these latter two functions are further restricted by including in 
the set (11) two additional differential equations which require 
them to be constant on #1X2 (see, for example, Reid [2]). 

Partial derivatives of co(x, rj, ir), &a(x, rj, IT) with respect to 
the variables^-, 7rt- will be denoted by writing these variables 
as subscripts ; derivatives of Q and ^ 7 with respect to the argu­
ments rii(xi), rji(x2) will be indicated by Ça, ^7;»i, Qw, ^y;i2, re­
spectively. The summation convention of tensor analysis is used 
throughout. 

The conditions usually required of an arc for the problem of 
Bolza in order to obtain sufficiency theorems insure for the sec­
ond variation the following properties. 

(Hi) The coefficients of the quadratic form co(x, 77, T) and the 
linear expressions $«(#, 77, w) are real single-valued functions of 
class C1, and the matrix ||<£a7ry(x)|| has rank m on x\x%. The co­
efficients of Q and ^fy are real constants, and the matrix 
l l^- i i^ .^H is of rank p. 

(H2) The quadratic form 0)Tviirj{x)uiUj is positive for all values 
(u-i)y^(0i) satisfying ^<xirj(x)uj = 01 (a = l, • • • , m). 

Condition (H2) implies, in particular, that the matrix 

(13) (i,j = 1, ' * * , » ;& oc = 1, • • • , m), 

is non-singular on #1X2. 
An arc 77= [rç»-(ff)] will be called differentially admissible if the 

functions rji(x) are of class D1 and satisfy the equations (11) on 
XiX2. An arc whose end values satisfy equations (12) will be said 
to be terminally admissible. Finally, an arc which is both differ­
entially and terminally admissible will, for brevity, be termed 
admissible. 

(H3) There exist p differentially admissible arcs rji = rjip(x)y 
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(J> = 1, • • • , p), such that the determinant | ^ y [ ^ ( ^ i ) , ^^fe) ] | is 
different from zero. 

Hypothesis (H3) is a condition of normality with respect to 
the differential equations (11) and end conditions (12). 

The accessory (Jacobi) system along a given non-singular ex­
tremal for the original problem of Bolza is defined as the Euler-
Lagrange equations and transversality conditions for the corre­
sponding second variation (10) and the auxiliary differential 
equations (11). If we set 0(#, 77,7r, /X) =CO(X, T?, 7r)+jua$a(x, 77,7r), 
these differential equations are 

(14) Ji(v, M) = d^n/dx - 0„ = 0, #« = 0, 

(i = 1, • • • , n; a = 1, • • • , m); 

the corresponding transversality conditions involve constants 
dy satisfying with the end values of rji, jxa the relations 

(15) Qis[v] + dy*TtiB + ( - 1)-0T<(*.) = °> ^7 = 0, 

(s= 1, 2 ; T = 1, • • • ,p). 

The associated accessory boundary problem consists of the 
equations 

(16) /iO?,M)+Xi?<=:0, $« = 0 

involving the characteristic parameter X, together with the end 
conditions (IS). A value X will be said to be a characteristic 
value of this problem if there exist corresponding solutions rji, fxa 

of (16) not all identically zero, and whose end values at xi and x% 
satisfy with suitable constants dy the end-conditions (15). The 
above hypothesis (H3) insures the condition rjirji^O on X1X2 for 
an arbitrary solution rji, fxa of this system. By a method similar 
to that indicated in the introduction for the simple problem of 
the calculus of variations, one may show that in order for 32[v] 
to be non-negative in the class of admissible arcs rj it is necessary 
that there exist no negative characteristic value of (16), (15). 
In view of the minimizing properties of the characteristic values 
of this system to be discussed later, one may also state that the 
non-existence of negative characteristic values of the accessory 
problem is equivalent to the non-negativeness of ^[y] in the 
class of admissible arcs 77. 

Since the matrix (13) is assumed to be non-singular, canonical 
variables f * may be introduced by means of the equations 
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f i = Qri(x, 7), T, fi), 0 = $a(%, V, 7r), 

(i = 1, • • • , n; a = 1, • • • , m), 

and system (16) may be written as 

(17) 1)1 = Aij(x)7)j + Bij{x)Çj, f/ = Cij(x)rjj — Aji(x)Çj — \rji. 

The elements A^-, B^, dj in (17) are continuous, the matrices 
||^*7lh IÎ Wll a r e symmetric, and \\Bn\\ is of rank n — m on x\Xi. 
Correspondingly, the end conditions (15) reduce to 

(18) Selrj, f] ss a9Wi(xi) — taftfai) + caWi(x?) + rf^fifaa), 

(<r = 1, • • • , 2»), 

where the coefficients of s„ are such that the matrix ||a<r A*+£ffirfTi||, 
(cr, r = 1, • • • , 2n), is symmetric. Moreover, for an arbitrary sys­
tem of the form (17), (18) whose coefficients satisfy the above 
conditions there exist quadratic forms Q [r}(xi), yfa) ], co(#, 77,77') 
with associated linear equations $«(#, V, y') = 0, (a = 1, • • • , m), 
and end conditions ^ 7 = 0 such that the given system is derived 
from this associated system (10), (11), (12) in the manner de­
scribed above (see Hu [l]) . 

I t is to be noted that the equations (16), (15) are the Euler-
Lagrange equations and transversality conditions for the func­
tional 

ViVidx 
*\ 

subject to the differential equations (11) and end-conditions 
(12). The more general boundary problem to be considered con­
sists of these equations for a functional 

(20) 3i[ir.X] = 2Q[r)(xi),r}(x2):\] + f %2c^{x, v, v':\)dx 

subject to (11) and (12). The canonical form of this problem is 
then 

(21) 77/ = Aij(x:\)7ij+Bij(x:X)Çj, TÇ- = Cij(x:\)rjj — Aji(x:\)Çj, 

*fo, f:X] = 0. 

For the still more general problem in which the coefficients 
of (11) and (12) also depend on A, at present no important re-
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suits concerning the existence of characteristic values and asso­
ciated comparison and oscillation theorems have been obtained. 
In fact, one may show by simple examples that these conditions 
as usually phrased are in general not satisfied by such problems. 

Of particular significance is the special problem of the form 
(21) in which this system reduces to 

(22) y\i = Aij(x)rij + 2*<y(&)f,-, f/ = Ci3{x)rjj — A3i(x)Ç3- — \Ki3r)3-

s*[v, f] = 0, 

that is, the case in which Q is independent of X and 2co(x, 77, rj' :X) 
= 2co(#, 77, 7)') —\rjiKij(x)ni. 

The above assumption (H3) is equivalent to the condition 
that there is no characteristic solution rjit J\- for which r?; = 0 on 
#1X2 (see, for example, Bliss [4], p. 48). As is customary (Reid 
[4], p. 575), we shall say that the order of anormality on xix% 
of the differential equations of the above boundary problem is 
equal to r if on this interval they possess exactly r linearly inde­
pendent solutions of the form 774- = 0, Çi = Vih(x), (h = l, • • • , r). 
Since the expressions <ï>a do not depend on X, the value of r is 
independent of X. It follows readily that r^m; moreover, if 77 
is an arbitrary differentially admissible arc and x'x" are any 
two points of xix2, then 

Vih{oc)y]i{x) 0, (h ,r). 

As a consequence of these relations, hypothesis (H3) is equiva­
lent to the assumption that the matrix 

(23) 

U = 1: 

• Vjh(%l) Vjh(x2) 

, r;y = 1, • • • , p), 

has rank p + r. This implies, in particular, that p^2n — r. 
Now the class of admissible arcs for a problem is unchanged 

when the conditions ^ 7 = 0 are replaced by conditions of the 
form 

^7 + eyh[— v3-h(xi)ri3{xi) + Vjh(x2)rij(%2)] = 0 , (7 = 1, • • • , p), 

where ey ht (j — ^-y ' * * ,p;h = l, • • • , r), are arbitrary constants. 
If Vu Ci is a characteristic solution of the original problem, there 
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are constants en such that rji, Çi+Vinen is a characteristic solution 
of the modified problem. Consequently, we do not distinguish be­
tween two problems which satisfy the above hypotheses and differ 
only in the end-conditions ^ r

1 = 0 and SÊ 2 =0 , (7 = 1, • • • , p), 
respectively, and these conditions are such that the matrix 

(24) 
2 2 

(j = 1, • • • , n; 7 = 1, • • • , p; h = 1, • • • , r ) , 

has rank p+r. If a, problem satisfies (Hi) and (H2), and not (H3), 
then the matrix (23) has rank p+r — k, where 0<k^p. By de­
leting k of the end-conditions ^ 7 = 0 , (7 = 1, • • • , p), one may 
then obtain a problem which satisfies (H3), and which is equiva­
lent to the original problem in the sense that an arc t\ is admissi­
ble for this new problem if and only if it is admissible for the 
original problem. Such a modified problem will be called the 
normal boundary problem determined by the end-conditions 
* r = 0 , ( 7 * l , ' ' ' ,p). 

3. Existence of Characteristic Values. As indicated in the in­
troduction, diverse methods of proof have been used in treating 
various special boundary problems of the general type formu­
lated in the preceding section. This is particularly true of such 
boundary problems that are linear in the characteristic parame­
ter. In this section we shall discuss the different methods that 
have been utilized in the proof of the existence of characteristic 
values. Instead of attempting to discuss the papers chronologi­
cally we shall group them according to the methods employed. 
Moreover, we shall discuss first those methods which have been 
used less within recent years in the consideration of boundary 
problems associated with the calculus of variations. 

(a) Application of the theory of integral equations. As shown 
by Hubert [ l ] , a boundary value problem consisting of a single 
second order differential equation with real coefficients and cor­
responding self-adjoint boundary conditions is equivalent to an 
integral equation with a real symmetric closed kernel. Hence by 
Hubert's theory of such integral equations the given boundary 
problem has an infinite number of real and no complex char-
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acteristic values. The results of the papers of Cairns, Mason [l ], 
and Myller [ l] listed in the bibliography either depend directly 
upon, or are closely related to the Hubert theory of integral 
equations. Markovic ([l] and [2]) has recently applied the theory 
of integral equations to the study of periodic solutions of self-
adjoint equations of even order with periodic coefficients, f 

By the introduction of a Green's matrix the general boundary 
problem (17), (18) is reduced to the equivalent system of inte­
gral equations 

Kij(%, t)rij(t)dt, 
x1 

where *»•ƒ(#, i) = Ka(t, x). The relation of the linear system of the 
form (17), (18) to the more general system (21) will be discussed 
later. 

(b) Application of difference equations. The method of differ­
ence equations has served as a heuristic approach to many kinds 
of transcendental problems. Indeed, it was the unpublished 
method which Sturm originally used in his investigations of 
boundary value problems. The rigorous passage to the limit 
from a system of difference equations to a differential system 
was carried through by Porter in 1902. Since then this method 
has been used by Bôcher, Fort, Carmichael, Richardson, 
Courant, Plancherel, W. M. Whyburn, and others in con­
sidering various types of boundary problems. We may, there­
fore, think of this method of passage to the limit as one of the 
well-established methods of treating such problems. If the 
speaker may venture a personal opinion, however, it seems 
that most results which have been established by the use of 
difference equations have subsequently been proved by other 
methods more elegant in detail. 

(c) Application of asymptotic expressions. The use of asymp­
totic expressions for the characteristic values and corresponding 
characteristic functions, together with the use of these expres­
sions in the theory of the development of arbitrary functions, 
dates from the work of Liouville. The reader is referred to 

f For brevity, references to literature on special equations, such as those 
of Hill and Mathieu, are not included in the bibliography at the end of this 
paper. 
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Bôcher [ l ] , pp. 177-179, for an introductory discussion of this 
method for a boundary problem consisting of a single second 
order differential equation and Sturmian boundary conditions. 
In more recent times, Birkhoff [l ] has developed asymptotic ex­
pressions for the solutions of a single equation of the nth. order 
involving a parameter in a general fashion, and has applied his 
results to a boundary problem which is linear in the character­
istic parameter, and involves two-point boundary conditions. 
The coefficients of the differential equation and the boundary 
conditions of his problem are not assumed real; moreover, the 
system itself is not supposed to be self-adjoint. In certain gen­
eral cases Birkhoff obtains the existence of infinitely many char­
acteristic values, and a corresponding expansion theorem for ar­
bitrary functions. In view of BirkhofFs general assumptions, it 
is not surprising that those real self-adjoint systems which come 
under the class considered by him may be treated by other 
methods which are simpler in detail than that involving the use 
of asymptotic expressions. All of the problems associated with 
the second variation of calculus of variations problems in the 
manner described in the preceding section are real and self-
adjoint. Consequently we shall not consider in detail the results 
of Birkhoff, nor shall we discuss specifically the important sub­
sequent work of Birkhoff, Tamarkin, Langer, Stone, and others 
in this field, For completeness, their papers are listed in the bib­
liography at the end of this paper. It is to be remarked in 
passing, however, that in the field of convergence and equi-
convergence theorems no other method has as yet obtained as 
general theorems as those proved by the use of asymptotic ex­
pressions. 

(d) Application of linear algebraic equations in infinitely many 
variables. In 1914 Lichtenstein [ l ] considered boundary value 
problems involving a single second order linear differential equa­
tion linear in the characteristic parameter, with associated 
Sturmian boundary conditions. By expanding admissible func­
tions 7)(x) in Fourier series, he showed that the characteristic 
values of the given problem were identical with the character­
istic values of an infinite system of linear algebraic equations 

(dij + \Kij)Xj = 0, 0', j = 1, 2, • • • ) , 

in the variables (#»•). The matrix || Kij\\ is completely continuous 
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(vollstetig) in the sense of Hubert. Under certain general con­
ditions he proved the existence of infinitely many characteristic 
values for the given problem, and also established equi-conver­
gence theorems in terms of the characteristic functions. Later, 
Lichtenstein [2 ] extended the method of proof to a system con­
sisting of a second order integro-differential equation with the 
special boundary conditions rj(xi) = 0 = rj(x2). Geiringer [ l ] has 
generalized the Lichtenstein method of proof to a system of dif­
ferential equations of the second order, and Boerner [ l ] has 
used the method in considering a self-adjoint equation of the 
fourth order. Anna Pell Wheeler has applied the theory of linear 
algebraic equations in an infinite number of variables to a sec­
ond-order differential equation with Sturmian boundary con­
ditions. Her method is very intimately related to that of 
Lichtenstein, though not identical with it. Finally, E. Holder 
has extended the Lichtenstein method to the boundary problem 
associated with the second variation of the problem of Lagrange 
with fixed end points, that is, to a system (17) with the bound­
ary conditions rji(xi) = 0 = ^(^2). 

(e) Application of general theorems on differential equations. 
Bliss [2] considered a boundary problem of the form 

yi = [SlrrO) + yS&OT{x)]yTi xi ^ x ^ xt9 

yRaTyr(0Cl) + yi<rryT{x2) = 0 , (<7, T = 1, • • • , Tl) , 

where the functions SU-, 93<rr are real-valued and continuous on 
#i#2, and SD^T, 9?«,T are real constants with the matrix ||2)î<n-î 9t<rr|| 
of rank n. The problem adjoint to (25) is defined as 

*l = - Sr|2U(*) + X8r,(*)], 
(26) 

2r(tfl)$r<r + ZT(x2)£lr<T = 0 , 

where the coefficients $T<r, Or<r satisfy the relations 

2K,#,r - Stt„0,r = 0, (<r, V, T = 1, • • • , tt). 

This definition of adjoint system is equivalent to that originally 
introduced by Bounitzky [ l ] . Bliss called the system (25) self-
adjoint if it is equivalent to (26) under a non-singular linear 
transformation z(r=%<rripc)yT. When a further hypothesis was 
satisfied the system was termed definitely self-adjoint. Bliss 
proved that a definitely self-adjoint system has only real char-
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acteristic values, and that these values are denumerably infinite 
in number. Moreover, certain general expansion theorems were 
proved by methods analogous to those of the Hilbert-Schmidt 
integral equation theory. 

The system (17), (18) is self-adjoint with respect to the trans­
formation matrix 

This system, however, is definitely self-adjoint according to the 
definition of Bliss [2] only in case | Bi3-\ 5^0, that is, in case there 
are no auxiliary differential equations $« = 0. In this connection 
it is to be pointed out that Cope [l ] makes the erroneous state­
ment that the general system (17), (18) is definitely self-adjoint 
according to the definition of Bliss [2], and this incorrect state­
ment has not been eliminated in the slightly changed form of 
his thesis which has only recently been published. 

Hu [ l ] has considered specifically the system (17), (18), and 
by a method of proof similar to that of Bliss [2] has proved the 
existence of an infinity of characteristic values. Moreover, the 
existence theorem of Hu does not assume the strengthened 
Clebsch condition (H2), but simply the non-singularity of the 
matrix (13). In a recent paper Bliss [5] has modified the defini­
tion of definite self-adjointness in such a way that the system 
(17), (18) is definitely self-adjoint according to this new defini­
tion. However, a general system (25) may be definitely self-
adjoint according to this new definition and have no character­
istic values or only a finite number. Reid [ó] has shown that 
a system which is definitely self-adjoint according to this new 
definition, and which satisfies the additional restriction that the 
matrix ||93ffT|| is of constant rank on x\x^ is equivalent to a sys­
tem of the form (22). The character of the equivalence of the 
given system to this latter system is new in the sense that the 
second system involves twice the number of dependent func­
tions occurring in the original system. Conditions are given by 
Reid [ó] for such a system to have an infinity of characteristic 
values. In particular, the problem considered by Hu is such a 
definitely self-adjoint system. 

(f) Application of the minimum principle. Now consider a 
boundary problem (22) which satisfies hypotheses (Hi), (H3), 

£ 
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for which the matrix (13) is non-singular, and such that the 
corresponding expression 32[rç] is positive for all non-identically 
vanishing admissible arcs rj. These conditions imply that the 
strengthened Clebsch condition (H2) also holds. I t is to be noted 
that whenever the form rjiKij-rjj- is positive definite and (H2) 
is satisfied, the hypothesis 32[?7]>0 for non-identically van­
ishing admissible arcs is not an essential restriction. In this 
case a value Ao exists such that if 32[r;] is replaced by 32[rç] 
+\0f^7]iKijrjjdx the modified quadratic functional satisfies the 
desired condition. The modified boundary problem is equiva­
lent to the original problem by a linear change of parameter. 

There will now be defined a sequence of classes of admissible 
arcs in which we shall consider the problem of minimizing the 
functional 32[^]. The class Si is defined as the totality of ad­
missible arcs satisfying the relation 

rjiKij-rjjdx = 1 . 

The sequence of classes is defined by induction as follows : sup­
pose classes Si, • • • , S8-i, (s^2), have been defined and are not 
empty, and for A = A*, (t = l, • • • , s — 1), where A* is the great­
est lower bound of 32 [rj] in the class St, there are rt, (0<rt^2n), 
linearly independent solutions of (22). If rjiK, f™, (K = 1, 2, • • • , r 
= f i+ • • • +r s_i) , denote these characteristic solutions, the 
class Ss is defined as the totality of arcs t] of the class 5s_i which 
satisfy the relations 

r]iKKijr)jdx = 0 , (K = 1, • • • , r). 
* i 

Under the above hypotheses one may then prove the following 
theorem : If the class Ss is non-vacuous and As is the greatest lower 
bound of 32[rç] in this class, then A=AS is a characteristic value of 
(22) and \8>\8-i. 

Various writers have proved for more or less general problems 
and by diverse methods the above theorem in the process of 
showing the existence of characteristic values. For the case of a 
single differential equation of the second order with self-adjoint 
boundary conditions Mason has used this method to prove the 
existence of characteristic values. The first proof of Mason [ l ] 



648 W. T. REID [October, 

depended upon the theory of integral equations, but in later 
papers (Mason [2], [3], and [4]) this proof was made independ­
ent of integral equation theory. A somewhat different proof of 
this result for a second order differential equation with Sturmian 
boundary conditions was given by Holmgren [ l ] . Reid [ l ] 
proved the above theorem for the general problem (22) by a 
method which closely parallels that of Mason. 

Still more recently Reid [5], using methods analogous to those 
of Reid [ l ] , has treated a type of integro-differential boundary 
problem which contains the differential boundary problems for­
mulated in §2 as special cases. In Reid [5] there is first consid­
ered a self-adjoint integro-differential boundary problem related 
to the functional ^M+fZïfxïMijix, t)rji(x)rjj'(t)dxdt in the man­
ner that the problem (17), (18) is related to 52[^]. Such a system 
reduces to (17), (18) for Mij(x, t)=0. Under the assumption 
that the expressions 32 [rç], $<*(#> V, y')> ^y[v(xi)i vix*)] satisfy 
hypotheses (Hi), (H2), (H3), while the functions Mi3-(x, t) are 
continuous and Af ,-,•(#, t)=Ma(t, x), it is proved that this ac­
cessory integro-differential problem has infinitely many char­
acteristic values. There is also considered in Reid [5 ] an integro-
differential problem that in general involves the parameter X 
non-linearly, and which reduces to the differential system (21) 
when certain functions are identically zero. The method of 
treatment is that of considering an auxiliary boundary problem 
which is linear in a second characteristic parameter A and re­
lated to the quadratic functional 32[^:X] of the given problem 
in a manner analogous to that in which the differential system 
(21) is related to (20). The characteristic values of the given 
problem are then those values of X for which some characteristic 
value of the auxiliary problem is equal to zero. Several sets of 
sufficient conditions for the existence of infinitely many char­
acteristic values are given, and, when stated for the special prob­
lems of the form (21) previously considered by Morse and 
Birkhoff and Hestenes, these results go beyond those obtained 
by the authors just mentioned. 

For the accessory boundary problem (17), (18), that is, the 
system (22) with Kn = bih the above theorem may be estab­
lished readily by the use of theorems of the classical calculus of 
variations. This was first indicated in a short paper by Bliss [ l ] 
for a plane problem of the calculus of variations with variable 
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end points. He proved by calculus of variations methods the 
extremizing property of the smallest characteristic value of the 
associated boundary problem, and established the equivalence 
of the non-negativeness of the characteristic values and the 
usual Jacobi condition. Hickson [ l] treated the accessory 
boundary problem for a fixed end-point problem of the cal­
culus of variations in w-space by the use of classical theorems 
of the calculus of variations. Finally, this calculus of variations 
method has been extended to the general problem (17), (18) by 
Wiggin [l ]. One might also establish the above theorem for the 
problem (22) by similar methods, but in view of the results of 
Reid [5], §7, one may readily deduce this result from the corre­
sponding theorem for the accessory problem (17), (18). 

Another type of proof of the above theorem is given by the 
existence theorems for the problem of Mayer that have been 
established by Graves [ l ] . 

One may also define the characteristic values by means of the 
maximum-minimum property introduced by Courant, which 
does not involve the use of characteristic functions. This method 
is particularly useful in the treatment of partial differential and 
more general functional equations. 

For a discussion of the application of the method of Ritz to 
certain self-adjoint boundary problems the reader is referred to 
Kryloff [ l ] . This memoir contains a bibliography of the numer­
ous publications of Kryloff and others on this topic. 

(g) Application of comparison and oscillation theorems. As in­
dicated in the introduction, Sturm utilized comparison and os­
cillation theorems in the proof of the existence of infinitely many 
characteristic values for the problem he considered. Bôcher 
greatly simplified the details and extended the results of the 
Sturmian theory. For a bibliography of the extensive publica­
tions of Bôcher the reader is referred to Birkhoff [4]. For brev­
ity, Bôcher's papers are not listed separately in the bibliography 
of the present paper. Further results on boundary problems as­
sociated with a single second order differential equation have 
been proved by Ettlinger ( [ l ] and [2]). 

In his statement of sufficient conditions for the problem of 
Bolza, Morse [2] used the boundary value problem formulation 
of the Jacobi condition, established for this problem comparison 
and oscillation theorems, and showed the existence of infinitely 
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many characteristic values. In his Colloquium lecture Morse [3] 
developed more general separation, comparison, and oscillation 
theorems for problems which are in general non-linear in the 
parameter. Although his results are stated for the problem in 
w-space without auxiliary differential equations, the methods 
are seen to extend readily to the general problem of Bolza when 
suitable normality assumptions are made. From the standpoint 
of the existence of characteristic values we may say that 
Morse's method is that of comparison and oscillation theorems, 
since such theorems are first established and then used in the 
proof of the existence of infinitely many characteristic values. 
The comparison and oscillation theorems, together with his re­
sults on the existence of characteristic values, are obtained un­
der hypotheses which are entirely analogous to those of the 
Sturmian theory. In particular, it is assumed that for arbitrary 
non-identically vanishing admissible arcs rj the functional (20) 
is a proper monotone decreasing function of X. 

Birkhoff and Hestenes have also treated boundary value 
problems associated with problems of the calculus of varia­
tions involving no auxiliary differential equations. Their results 
on the existence of characteristic values, similar to those of 
Morse, are also obtained by the use of comparison and oscilla­
tion theorems. Further discussion of their results will be given 
in the next section on comparison and oscillation theorems. 

4. Oscillation and Comparison Theorems. In the introduction 
we have indicated the general character of the comparison and 
oscillation theorems of the Sturmian theory. The present section 
is concerned with the great extensions and generalizations of 
these theorems that have been established within recent years. 
Before taking up this more recent literature, however, we note 
that for a second order equation linear in the parameter and 
having associated Sturmian boundary conditions Richardson 
[l] proved the oscillation properties of the characteristic func­
tions using the Jacobi condition of the calculus of variations and 
the extremizing properties of the characteristic values. This last 
property was deduced from integral equation theory. 

As indicated in §3 (b), various writers have reconstructed and 
extended Sturm's work on second-order difference equations, 
proving oscillation and comparison theorems for such equations. 
Results for differential systems have been obtained by limiting 
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processes from corresponding results for difference equations by 
Porter, Bôcher, Whyburn, and others. The papers [2] and [3] of 
Carmichael contain a highly interesting treatment of difference 
equations, together with a discussion of the intimate relation­
ships that exist between algebraic and transcendental problems. 

The boundary problem for which Morse ( [ l ] and [3]) states 
his general comparison and oscillation theorems is equivalent 
to a problem (21) which does not involve any auxiliary differential 
equations <£« = 0. It is assumed that for each value of X hypothe­
sis (H2) is satisfied, and for X sufficiently small the functional 
(20) is positive for arbitrary non-identically vanishing admissi­
ble arcs rj; moreover, conditions are imposed which insure that 
for non-identically vanishing admissible arcs rj the functional 
32[?7'X] is a properly monotone decreasing function of X. For 
such a problem (H3) is satisfied whenever the matrix H ^ . a ^ . ^ H 
is of rank p. By the use of broken extremals, Morse introduces 
a quadratic form in a finite number of variables whose coeffi­
cients depend upon X and which has the following property: 
the form is singular if and only if X is a characteristic value of 
(21); moreover, for such a value the nullity of the form is the 
index of X as a characteristic value, and the negative type num­
ber of the form is equal to the number of characteristic values of 
(21) which are less than this value. 

Suppose that B is the problem determined by Q, a>, tyy, 
(7 = 1, • • • , p), B* is a second problem determined by Ç*, co*, 
>£„*, (*> = 1, • • • , p*)t and that each of these problems satisfies 
the above described conditions. We shall denote the charac­
teristic values of B and J3* by {Xs} and {Xs*}, (s = l, 2, • • • ), 
respectively, whenever these values exist. If the relations 
^y[rj(xi), rç(x2)]

 a r e linearly dependent on those of the set 
* * h ( * i ) , *?(**)], while QsQ*, co=co*, Morse has called £* a 
sub-problem of B of dimension p* — p. 

In case B and B* have co=co* Morse has proved comparison 
theorems of the following nature : (a) comparison of a problem 
with a sub-problem; (/3) comparison of two problems which differ 
only in the end form Q; (7) comparison of two general problems. 

The essential result of type (a) may be stated as follows: 
Suppose B* is a sub-problem of B of dimension p* — p. Then if 

exist for B the characteristic values Xi*, • • • , Xs* 
exist f or B* and XS+3?*_^^X8*^XS, (5 = 1, 2, • • • ). 



652 W. T. REID [October, 

In case (fi) let N and P denote, respectively, the negative 
and positive type numbers of the quadratic form Ç* — Q on the 
linear set of values [rji(xi)y rji(x2)} satisfying ^ 7 = 0. Then if 
Xi, • • • , Xs+p exist for B, the characteristic values Xi*, • • • , Xs* exist 
for B*and\s+p^:\^;if\ff • • • y\?+N exist for B*,then\\, • • • , Xs 

exist f or B and \*+N^\> 

In the general case (7) let ^p° = 0, (p = 1, • • • , p°), be linearly 
independent conditions such that the problem B0 involving (?, co, 
^P° is a sub-problem of 5 , and the problem 50* involving 
Q*, co, SPp° is a sub-problem of B*. The results of Morse in case 
(7) are obtained by applying the results of the previous cases 
to the problems B and Bo, B* and Bf, B0 and B^. In particular, 
if B and 5 * are two general problems the number of character­
istic values of B on a given finite interval of the X-axis differs 
from the number of characteristic values of B* on this interval 
by at most In. 

For the case of different integrand functions co we shall state 
only the following result: If 32*[r;:X] and 32[?7'X] denote the ex­
pressions (20) f or B* and B, respectively y and 3£[rj:\] ^32[rç:X] 
for arbitrary non-identically vanishing admissible arcs rj, then 
if Vs, * * * » ^* exist for B* the characteristic values Xi, • • • , X« 
exist f or B and X*^X5. If the strict inequality sign holds in the 
first relation, then the strict inequality sign also holds in the second 
relation. 

The general oscillation theorem of Morse [3] is as follows: If 
v(\) is the number of characteristic values of B less than X, and 
c(X) is the number of points on x\ <x<x2 conjugate to xi for this 
value of X, then v(\) - (2n-p)^cÇk) ^vÇk). 

Birkhoff and Hestenes have also obtained comparison and os­
cillation theorems for the same problem that has been treated 
by Morse [3]. By the introduction of so called natural isoperi-
metric conditions for the functional 32 [rj], they are led to a char­
acterization of the solutions of the corresponding equations 
Ji(v) = 0 which satisfy the boundary conditions (17). In particu­
lar, a set of natural isoperimetric conditions is called a minimal 
set if 32 [rj ] ̂  0 for every admissible arc rj satisfying these condi­
tions, and if no proper subset of these conditions has this prop­
erty. The number of conditions in a minimal set is always the 
same, and this number is called the type number of 32[rç] rela­
tive to the conditions ^ 7 = 0. For a non-singular problem this 
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type number is finite if and only if hypothesis (H2) holds. In 
addition, Birkhoff and Hestenes introduce the term order of de­
generacy for the maximum number of linearly independent solu­
tions of Ji[rj]=0 satisfying the boundary conditions (18). If 
(H2) is satisfied, the type number and order of degeneracy of 
52 [?j] relative to tyy = 0 are equal respectively to the negative 
type number and the nullity of the Morse quadratic form. The 
oscillation and comparison theorems of Birkhoff and Hestenes 
are somewhat more complete than those of Morse, because of 
the introduction of the notion of order of concavity of a prob­
lem B with respect to a sub-problem B*. Hestenes [3] has re­
cently announced the extension of these results to the general 
boundary problem associated with the problem of Bolza as for­
mulated in §2. 

Because of their generality, we have first described the com­
parison and oscillation theorems obtained by Morse and Birk­
hoff and Hestenes for the general problem (21). I t is to be noted, 
however, that for the problem (17), (18) which involves the 
parameter linearly these comparison and oscillation theorems 
are deducible from the extremizing properties of the character­
istic values. Hu [l] has used this method in proving certain 
comparison and oscillation theorems for the accessory problem. 
This method has also been used by Reid [5] in establishing 
general comparison and oscillation theorems for the integro-
differential problem there considered. Moreover, as pointed out 
in the preceding section, Reid has shown that the theory for 
the general boundary problem (21) may be made to depend 
upon an associated boundary problem involving a second pa­
rameter linearly. Comparison and oscillation theorems for the 
general problem are ready consequences of the corresponding 
theorems for the associated problem. This method of treating 
the general problem non-linear in the parameter seems to be of 
distinct interest because of the diverse methods of proof that 
are available for the treatment of the associated problem linear 
in the second parameter. It is to be noted that in order to es­
tablish an oscillation theorem for the general problem (21) when 
no additional assumption of normality is made it is necessary 
to formulate a new definition of conjugate points. The definition 
given by Reid [5] for the integro-differential problem there 
treated reduces for the differential problem (21) to the follow-
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ing: For Xi<c<x2 let Bc denote the normal boundary problem 
determined by the functional 32[i?:X] and the end-conditions 
rç*(#i) =0 = rji(c). The value c is said to be a conjugate point of 
x = xi on Xix2 relative to the differential equations of (21) for 
X=X0 if : (i) X=Xo is a characteristic value of Bc\ (ii) there is at 
least one characteristic solution t\i = yu ti = zi °f Be such that 
for arbitrary e satisfying 0 < e < x 2 — c there is no corresponding 
set of functions $"»•(#) forming with the arc rji = yi(x) on x\C, rji = 0 
on c^x^c+e a characteristic solution of Bc+e for X=X0. It is 
easily seen that this definition of a conjugate point reduces to 
the older definition when certain additional assumptions of nor­
mality are satisfied. 

5. Application of Boundary Value Problems to Sufficiency 
Theorems in the Calculus of Variations. As indicated in the 
introduction for a simple problem of the calculus of variations, 
the Jacobi condition may be phrased in terms of a boundary 
value problem. For a detailed discussion of this approach for 
a simple problem the reader is referred to chapter VI of Lovitt 
[ l ] . Lichtenstein [3] and [4] has used the method of boundary 
problems in obtaining sufficient conditions for a weak relative 
minimum in certain problems of the calculus of variations. 
Boerner [2] and [3] has applied the method of Lichtenstein 
to problems involving higher derivatives and to the parametric 
problem in the plane with fixed end-points. As indicated in 
§3(f), Bliss [l] has expressed the Jacobi condition for a plane 
calculus of variations problem with variable end-points in terms 
of the characteristic values of a boundary problem. For the use 
of this formulation of the Jacobi condition in connection with 
sufficiency theorems for more general problems of the calculus 
of variations, the reader is referred to Morse [2], Myers [ l ] , 
Hestenes [ l] and [2], Bliss [4], and Reid [3] and [4]. A com­
parison of different formulations of the Jacobi condition has 
been made by Reid [2]. It is of interest to note that the bound­
ary problem used by Reid [3] in treating discontinuous 
solutions in the non-parametric problem involves boundary 
conditions at more than two points. By a very simple trans­
formation, however, this problem is reducible to one of the form 
(17), (18) with two-point boundary conditions. 

6. Remarks. We shall now discuss briefly certain aspects of 
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the theory of boundary problems of the type formulated in §2 
that are in need of further consideration. It follows readily that 
a real self-adjoint boundary problem consisting of a single dif­
ferential equation of even order and associated two-point 
boundary conditions may be reduced to a problem of the sort 
formulated in §2. Thus, for example, all the theorems of 
Janczewsky [l] and Cimmino [l] on the existence of char­
acteristic values for a real self-adjoint fourth order boundary 
problem follow readily from the theory of the general problem 
of this paper. However, from the oscillation theorems that have 
been established for this general problem one does not obtain 
all of the oscillation theorems that have been proved for real 
self-adjoint boundary problems whose differential equations are 
of even order greater than two. As yet no one has made an ex­
haustive study of the relations between comparison and oscilla­
tion theorems for such a system and the corresponding theorems 
for the general problem of §2. 

In all of the above discussion of the general problems of §2 
we have assumed that the matrix (13) is non-singular. We do 
not have time in this lecture to consider the work of Hilbert, 
Weyl, and others concerning singular boundary value problems. 
We wish to mention, however, a recent paper by Morse and 
Leighton on singular quadratic functions because their method 
of attack is that of the calculus of variations. It would be highly 
desirable to extend their work to singular quadratic functionals 
involving more than a single dependent function, and to con­
sider the theory of associated boundary value problems. 

As indicated in §3(c), various authors have obtained by the 
use of asymptotic expansions stronger results for the expansion 
problem than have been obtained by other methods. The ques­
tion of the convergence and summability properties of the gen­
eralized Fourier expansions in terms of the characteristic 
functions of the general boundary problem here considered is 
a fertile field for further research. 

There is also the question of boundary problems of the type 
formulated in §2 which involve more than a single character­
istic parameter. Hilbert [ l ] , Yoshikawa [ l ] , [2], Hilb [ l ] , 
Richardson [2], [3], and [4], and others have considered the 
question of a Klein oscillation theorem for boundary problems 
associated with second order differential equations. To date this 
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question has not been considered in detail for more general prob­
lems of the type here discussed. A start in this direction has been 
made by Reid [7]. 

Another field of interest is the consideration of the character 
of solutions of the boundary problem when the independent 
variable x is complex. Hille has considered rather extensively 
the question of oscillation theorems for second order differential 
equations in the complex domain. So far as I know, however, 
such a study has not been made of more general problems of the 
sort considered in this paper. 

Finally, the question of the use of boundary problems in con­
sidering more general functionals of the calculus of variations 
is of distinct importance. In his recent Chicago dissertation 
Goldstine [l ] has considered a somewhat general functional of 
lines, and has formulated an analogue of the Jacobi condition 
in terms of an integral equation. It is of interest to note that 
for the classical calculus of variations problem his formulation 
of the Jacobi condition is expressible in terms of a boundary 
problem of the fourth order. 

7. Boundary Problems Associated with Multiple Integrals of 
the Calculus of Variations. In concluding this address, I wish to 
speak very briefly concerning boundary value problems asso­
ciated with double and multiple integrals of the calculus of 
variations. For a double integral problem involving a single de­
pendent function the Jacobi equation along an extremal which 
satisfies the strengthened Legendre condition is an elliptic par­
tial differential equation of the second order. Consequently all 
the literature concerning such partial differential equations may 
be thought of as concerning the Jacobi equation for a calculus 
of variations problem. We shall, however, restrict our comments 
here to the discussion of a few papers which are specifically con­
cerned with the phrasing of the Jacobi condition for double and 
multiple integrals in terms of a boundary problem associated 
with the Jacobi equation. 

Lichtenstein [7], [8], and [9] has utilized such a formulation 
of the Jacobi condition for double integral problems with fixed 
boundary and also for such problems involving variable bound­
ary conditions of a very simple type. He assumed that the 
integrand function was analytic, and by the use of expansion 
theorems in terms of the characteristic functions of the bound-
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ary problem he proved that when the smallest characteristic 
number of his problem was greater than unity the given ex­
tremal surface afforded the integral a weak relative minimum 
Picone [2] has also expressed the Jacobi condition in terms of 
the characteristic values of a boundary problem. Reid [8] es­
tablished by use of methods of the calculus of variations the 
minimizing property of the least characteristic number of the 
associated boundary problem, and obtained a corresponding 
proof of sufficient conditions for a weak relative minimum for 
the double integral problem with fixed boundary values. Reid 
[9] has given an extended form of the Jacobi condition which 
is of use in considering the associated boundary value problem 
when the integrand function and the given extremal are not 
assumed to be analytic. 

For double and w-tuple integrals of the calculus of variations 
involving a single dependent function Simmons ( [ l ] and [2]) 
has formulated an analogue of the Jacobi condition in terms of 
a boundary problem. One may readily formulate such an ana­
logue for still more general multiple integrals of the calculus of 
variations. 

Using the theory of boundary value problems, Birkhoff and 
Hestenes have proved the existence of a set of natural isoperi-
metric conditions for the second variation along an extremal of 
a double integral problem which satisfies the strengthened Le-
gendre condition. 

It is to be remarked that for these accessory problems asso­
ciated with double and multiple integral problems one may 
prove certain comparison theorems; however, the results which 
have been obtained concerning oscillation theorems for such 
problems are quite meager. 

The properties of minimizing surfaces for double and multiple 
integral problems which are not extremals in the usual sense, 
that is, which are not of class C2, have been studied by Haar and 
his associates (see Haar [l ] ; also Bliss [7]). For such a minimiz­
ing surface the usual Jacobi equation is replaced by a pair of 
partial differential equations. One may readily set up a corre­
sponding boundary problem and state that as a necessary con­
dition for a minimum this problem can have no negative 
characteristic values. However, the question of the existence 
and the character of the solutions of such a boundary value 
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problem has not yet been solved. The study of this sort of 
boundary problem and its application to the proof of sufficient 
conditions for an extremum in such a problem is one of distinct 
interest and importance in the calculus of variations. 
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