p-ALGEBRAS OF EXPONENT p^{*}

by nathan Jacobson \dagger

A. A. Albert and O. Teichmüller have recently investigated the structure of p-algebras, that is, normal simple algebras of degree p^{e} and characteristic $p . \ddagger$ In particular they showed that a necessary and sufficient condition that such an algebra have exponent p is that it be similar to an algebra A having a maximal subfield $C=F\left(c_{1}, c_{2}, \cdots, c_{m}\right)$, where $c_{i}{ }^{p}=\gamma_{i} \epsilon F$, the underlying field. The latter algebra is cyclic. It is the purpose of this note to apply some results of my paper Abstract derivation and Lie algebras§ to obtain a new generation of A. For $m=1$ this generation is more symmetric than the cyclic generation. We obtain a condition that A be a matrix algebra in terms of the new generation, and when $m=1$ we have as a consequence a reciprocity law for fields of characteristic p.

Let A be a normal simple algebra of degree p^{m} (order $p^{2 m}$) over a field F of characteristic p and suppose A contains the maximal subfield $C=F\left(c_{1}, c_{2}, \cdots, c_{m}\right), c_{i}{ }^{p}=\gamma_{i} \epsilon F$. Let D be an arbitrary derivation of C over F, that is, a mapping $x \rightarrow x D$ of C into itself such that

$$
\begin{aligned}
(x+y) D & =x D+y D, & & (x \alpha) D=(x D) \alpha, \\
(x y) D & =(x D) y+x(y D), & & \alpha \in F .
\end{aligned}
$$

It is known that D may be chosen so that the only elements z such that $z D=0$ are those of $F, \|$ and for a D of this type I have shown that

$$
\begin{equation*}
x\left(D^{p^{m}}+D^{p^{m-1}} \tau_{1}+\cdots+D \tau_{m}\right)=0, \quad \tau_{i} \in F, \tag{1}
\end{equation*}
$$

* Presented to the Society, April 10, 1937.
\dagger National Research Fellow.
\ddagger A. A. Albert, On normal division algebras of degree pe over F of characteristic p, Transactions of this Society, vol. 39 (1936), pp. 183-188, and Simple algebras of degree pe over a centrum of characteristic p, Transactions of this Society, vol. 40 (1936), pp. 112-126. O. Teichmüller, p Algebren, Deutsche Mathematik, vol. 1 (1936), pp. 362-388.
§ Transactions of this Society, vol. 42 (1937), pp. 206-224, referred to as J.
|| R. Baer, Algebraische Theorie der differentierbaren Funktionenkörper. I, Sitzungsberichte Heidelberger Akademie, 1927, pp. 15-32.
or

$$
x^{\left(p^{m}\right)}+x^{\left(p^{m-1}\right)} \tau_{1}+\cdots+x^{\prime} \tau_{m}=0
$$

for all $x \in C$, but no equation of the form

$$
x^{(r)}+x^{(r-1)} b_{1}+\cdots+x^{\prime} b_{r-1}+b_{r}=0, \quad b_{i} \in C
$$

can hold if $r<p^{m}$.* I have shown also that any derivation in a simple subalgebra of a normal simple algebra may be extended to an inner derivation in the latter. \dagger Thus there exists an element d in A such that $[x, d] \equiv x d-d x=x D$ for all $x \in C$.

We note that

$$
\begin{equation*}
x d^{k}=d^{k} x+C_{k, 1} d^{k-1} x^{\prime}+\cdots+x^{(k)} \tag{2}
\end{equation*}
$$

where the coefficients are those of the binomial theorem, and hence $x d^{p^{i}}=d^{p^{i}} x+x^{\left(p^{i}\right)}$. It follows from (1) that ($d^{p^{m}}+d^{p^{m-1}} \tau_{1}$ $+\cdots+d \tau_{m}$) commutes with every x, and since C is a maximal subfield of $A,\left(d^{p^{m}}+d^{p^{m-1}} \tau_{1}+\cdots+d \tau_{m}\right)=c \epsilon C$. Deriving with respect to d (taking commutators), we have $[c, d]=0$, and so $c=\delta \epsilon F$ and

$$
\begin{equation*}
d^{p^{m}}+d^{p^{m-1}} \tau_{1}+\cdots+d \tau_{m}=\delta \tag{3}
\end{equation*}
$$

We assert that C and d generate the whole of A. Suppose

$$
\begin{equation*}
d^{r}+d^{r-1} b_{1}+\cdots+b_{r}=0, \quad b_{i} \in C \tag{4}
\end{equation*}
$$

is an equation of least degree having coefficients in C and satisfied by d. If $x \in C$ by (2)

$$
d^{r-1} x_{1}+d^{r-2} x_{2}+\cdots+x_{r}=0
$$

where, if we use the $C_{r, k}$ notation for binomial coefficients,

$$
\begin{gathered}
x_{1}=C_{r, 1} x^{\prime}, \quad x_{2}=C_{r, 2} x^{\prime \prime}+C_{r-1,1} x^{\prime} b_{1}, \cdots \\
x_{r}=x^{(r)}+x^{(r-1)} b_{1}+\cdots+x^{\prime} b_{r-1}
\end{gathered}
$$

Since (4) has minimum degree, $x_{1}=x_{2}=\cdots=x_{r}=0$. But by (1) $x_{r}=0$ is impossible for all x unless $r \geqq p^{m}$. It follows that $r=p^{m}$ and $1, d, \cdots, d^{p^{m}-1}$ are (right) independent over C. Thus C and d generate an algebra of order p^{m} over C and hence $p^{2 m}$ over F, and so C and d generate all of A. The field C, the derivation

[^0]D, and the equation (3) give a complete description of A.
Let $V(x)$ for $x \in C$ be the function
$$
V_{p^{m}}(x)+V_{p^{m-1}}(x) \tau_{1}+\cdots+V_{1}(x) \tau_{m}
$$
where
$$
V_{p i}(x)=x^{p i}+\left(x^{(p-1)}\right)^{p i-1}+\left(x^{\left(p^{2}-1\right)}\right)^{p i-2}+\cdots+x^{(p i-1)} .
$$

I have shown that $V(x) \epsilon F$, and that it has properties analogous to the norm in cyclic fields.* Now suppose $\delta=V\left(x_{0}\right)$. If $d_{1}=d-x_{0}$, then $\left[x, d_{1}\right]=x D$ for all x, and since

$$
d_{1}{ }^{p j}=\left(d-x_{0}\right)^{p i}=d^{p i}-V_{p j}\left(x_{0}\right),
$$

we have

$$
d_{1}{ }^{p^{m}}+d_{1}{ }^{p^{m-1}} \tau_{1}+\cdots+d_{1} \tau_{m}=0
$$

and so $A \cong F_{p^{m}}$, the algebra of all p^{m}-rowed square matrices with elements in F. \dagger

Conversely suppose that $A \cong F_{p^{m}}$. Then there exists in A a field $\tilde{C} \cong C$ and an element $\tilde{d_{1}}$ such that $\left[\tilde{x}, \tilde{d}_{1}\right]=\widetilde{x D}$ where $x \longleftrightarrow \sim$ in the isomorphism between C and \tilde{C} and

$$
\tilde{d}_{1} p^{m}+\tilde{d}_{1}{ }^{p^{m-1}} \tau_{1}+\cdots+\tilde{d}_{1} \tau_{m}=0 .
$$

This isomorphism between C and \tilde{C} may be extended to an automorphism in $A . \ddagger$ Hence there exists an element d_{1} corresponding to \tilde{d}_{1} such that $\left[x, d_{1}\right]=x D$ and

$$
d_{1}{ }^{p^{m}}+d_{1}{ }^{p^{m-1}} \tau_{1}+\cdots+d_{1} \tau_{m}=0
$$

We observe that $d-d_{1}$ commutes with all the elements of C, and hence $d_{1}=d-x_{0}, x_{0} \epsilon C$. It follows as before that $\delta=V\left(x_{0}\right)$.

Theorem. A necessary and sufficient condition that A be $\cong F_{p^{m}}$ is that $\delta=V\left(x_{0}\right), x_{0} \in C$.

We now consider the special case where $m=1, C=F(c)$, $c^{p}=\gamma$. Let D be the derivation such that $c D=1$. It is easily seen that $D^{p}=0$ and hence A is generated by c and d such that

[^1]$[c, d]=1$ and $d^{p}=\delta$. Thus A has the basis $d^{i} c^{j}(i, j=0,1, \cdots$, $p-1)$ such that
\[

$$
\begin{equation*}
c^{p}=\gamma, \quad d^{p}=\delta, \quad c d-d c=1 \tag{5}
\end{equation*}
$$

\]

The condition that $A \cong F_{p}$ is $\delta=V\left(x_{0}\right), x_{0} \in F(c)$. Here $V(x)=x^{p}$ $+x^{(p-1)}$, and so if $x=\xi_{0}+c \xi_{1}+\cdots+c^{p-1} \xi_{p-1}$, then

$$
\begin{equation*}
V(x)=\left(\xi_{0}^{p}-\xi_{p-1}\right)+\gamma \xi_{1}^{p}+\cdots+\gamma^{p-1} \xi_{p-1}^{p} . \tag{6}
\end{equation*}
$$

If δ is not a p-th power, (5) is essentially symmetric in c and d. We define the derivation $d \rightarrow d E=-1$ in $F(d)$. Since $E^{p}=0$, the condition that $A \cong F_{p}$ is that

$$
\gamma=V\left(y_{0}\right)=y_{0} E^{p-1}+y_{0}^{p}, \quad y_{0} \epsilon F(d)
$$

But if

$$
y=\eta_{0}+d \eta_{1}+\cdots+d^{p-1} \eta_{p-1}
$$

then

$$
V(y)=\left(\eta_{0}^{p}-\eta_{p-1}\right)+\delta \eta_{1}^{p}+\cdots+\delta^{p-1} \eta_{p-1}^{p}
$$

Thus we have the following reciprocity theorem for arbitrary fields of characteristic p.

Theorem. If γ and δ are not p-th powers in F, then $\left(\xi_{0}{ }^{p}-\xi_{p-1}\right)$ $+\gamma \xi_{1}{ }^{p}+\cdots+\gamma^{p-1} \xi_{p-1}^{p}=\delta$ is solvable for $\xi_{i} \epsilon F$ if and only if $\left(\eta_{0}{ }^{p}-\eta_{p-1}\right)+\delta \eta_{1}{ }^{p}+\cdots+\delta^{p-1} \eta_{p-1}^{p}=\gamma$ is solvable for $\eta_{i} \epsilon F$.

University of Chicago

[^0]: * J, p. 218.
 \dagger J, p. 214.

[^1]: * See J, p. 224.
 \dagger The symbol \cong denotes isomorphism. For the above equations and result see J, p. 223.
 \ddagger M. Deuring, Algebren, 1935, p. 42.

