AN INDECOMPOSABLE LIMIT SUM

BY N. E. RUTT

It is the object of this paper to investigate a certain simple monotone sequence of continua. The theorem of the paper states conditions under which the limit sum of the sequence is indecomposable. The precise formulation and proof of the theorem will be undertaken after the following lemma is established.

Lemma. Let K be a plane bounded indecomposable continuum and L a plane bounded continuum such that $K \cdot L \neq 0$, and that $c(L)^{*}$ includes a particular component λ containing the component δ of $c(L+K)$ with the following properties:
(a) the set L contains two distinct points, a and c, connected through δ by the arc B which divides δ into δ_{i} and δ_{e}, and λ into λ_{i} and λ_{e};
(b) both λ_{i} and λ_{e} contain points of K.

Then each component of $c(K+L)$ has as its boundary a proper subset of $K+L$.

The assumption that $c(K+L)$ has a component γ with boundary Γ such that $\Gamma \supset(K+L)$ will be shown contradictory. Let the boundaries of $\delta_{i}, \delta_{e}, \lambda_{i}, \lambda_{e}$ be respectively $\Delta_{i}, \Delta_{e}, \Lambda_{i}$, and Λ_{e}. Suppose that δ is unbounded and also δ_{e} and λ_{e}, so that δ_{i} and λ_{i} will necessarily be bounded. Evidently $\lambda_{i} \supset \delta_{i}$ and $\lambda_{e} \supset \delta_{e}$. Consider first the case in which L is irreducible between a and c.

Both Λ_{i} and Λ_{e} contain L. For $\Lambda_{i} \subset L+B$ and $\Lambda_{e} \subset L+B$; so, since B is an arc with $L \cdot(B) \dagger=0, \Lambda_{i} \cdot L$ and $\Lambda_{e} \cdot L$ are continua containing $a+c$. If either of these is not identical with L, then L is reducible between a and c. The domains δ and γ are, moreover, identical, for both λ_{i} and λ_{e} contain points of K, therefore points of Γ, and therefore points of γ. There is thus an arc X in γ such that $X \cdot \lambda_{i} \neq 0$ and $X \cdot \lambda_{e} \neq 0$, and since $X \cdot L=0$, then $(B) \cdot X \neq 0$. This implies $X \cdot \delta \neq 0$, accordingly $\gamma \cdot \delta \neq 0$; and as both γ and δ are components of $c(K+L)$, then $\gamma=\delta$, and $\lambda+L \supset \Gamma \supset K$.

Let K_{i} be the sum of $K \cdot \lambda_{i}$ and of all the components of $L \cdot K$

[^0]containing limit points of $K \cdot \lambda_{i}$; and let K_{e} be a similar set constructed from λ_{e}. Each of these is a closed subset of K; and $K_{i}+K_{e} \supset K \cdot\left(\lambda_{i}+\lambda_{e}\right) \supset K \cdot \lambda$, so that $K_{i}+K_{e} \supset \overline{K \cdot \lambda}$. If $K_{i}+K_{e}$ $\ngtr K \cdot L$, then $K \cdot L$ includes a component M such that $\overline{K \cdot \lambda} \cdot M=0$ and M may be enclosed in a simple closed curve C, not intersecting $K \cdot L$, and excluding $\overline{K \cdot \lambda}$. But $C \cdot(\overline{K \cdot \lambda}+K \cdot L)=0$ implies $C \cdot K=0$, because $\lambda+L \supset K$, so C separates K without intersecting it. Accordingly $K_{i}+K_{e}=K \cdot \lambda+K \cdot L=K$. But now if both K_{i} and K_{e} were continua, as they are proper subsets of K, the set $K=K_{i}+K_{e}$ would be decomposable. Thus either K_{i} or K_{e} is disconnected.

Let K_{i} be disconnected, that is, let $K_{i}=K_{a}+K_{c}$ where $K_{a}=\bar{K}_{a}, K_{c}=\bar{K}_{c}$, and $K_{a} \cdot K_{c}=0$. As $\lambda_{i} \cdot K$ is contained by Δ_{i}, the components of $K \cdot \lambda_{i}$ are an orderable collection and elements of this collection accessible from δ_{i} must belong to both K_{a} and K_{c}. Thus there is a pair of $\operatorname{arcs} B_{a}$ and B_{c} where $\delta_{i} \supset\left\{\left(B_{a}\right)+\left(B_{c}\right)\right\}, \quad B_{a} \cdot K_{a} \cdot \lambda_{i} \neq 0, \quad B_{c} \cdot K_{c} \cdot \lambda_{i} \neq 0, \quad B_{a} \cdot(B) \neq 0$, $B_{c} \cdot(B) \neq 0$, and $B_{a} \cdot B_{c}=0$. Now $B_{a}+B+B_{c}$ contains an arc D, such that $D \supset B_{a}+B_{c}, D \cdot B$ is a subarc of $(B),(D) \subset \delta$, and $\delta-(D)$ is a pair of domains δ_{u} and δ_{b}. Let the notation be so chosen that $\delta_{b} \subset \delta_{i}$ and $\delta_{u} \supset \delta_{e}$, the relationships being clear from the construction; and let the boundaries of δ_{u} and δ_{b} be Δ_{u} and Δ_{b}. Note that $\delta_{b} \cdot(a+c)=0$.

Now $\Delta_{b} \cdot(K+L) \nsubseteq K$. For $\Delta_{b} \supset D$ and consequently $\Delta_{b} \cdot K_{a} \neq 0$ and $\Delta_{b} \cdot K_{c} \neq 0$. But $\Delta_{b} \cdot(K+L)$ is a continuum because $\Delta_{b} \cdot c(K+L)=(D)$. As $K_{a} \cdot K_{c}=0,{\overline{\Delta_{b}} \cdot K_{a}} \cdot{\overline{\Delta_{b}} \cdot K_{c}}_{c}=0$; that is $\Delta_{b} \cdot(K+L) \$ \Delta_{b} \cdot\left(K_{a}+K_{c}\right)$. Therefore $\Delta_{b} \cdot L \cdot c\left(K_{a}+K_{c}\right)=L_{k} \neq 0$. Moreover L_{k} includes a component L_{b} such that $\overline{L_{b}} \cdot K_{a} \neq 0$ and $\overline{L_{b}} \cdot K_{c} \neq 0$, for otherwise it must follow again that $\Delta_{b}-(D)$ is disconnected. Now $K_{e} \not L_{b}$, as otherwise there must be a component of $K \cdot L$ containing L_{b} and thus contained in both K_{a} and K_{c}. Thus $K_{i}+K_{e} \ngtr L_{b}$ and $L \cdot c(K) \supset h$, a point distinct from a and from c, and in Δ_{b}.

Let S be a circle with center h and radius such that $c e(S)^{*}$ is a set with no points in $K+D+B$, and such that in $e(S) \cdot \delta_{e}$ there is a ray R with end on (B). As L is irreducible between a and $c, L \cdot c i(S)$ consists of sets $L_{a}^{\prime \prime}$ and $L_{c}^{\prime \prime}$ mutually separated

[^1]between a and c. Let L_{a} and L_{c} be the components of these containing a and c. Evidently $S \cdot L_{a} \neq 0$ and $S \cdot L_{c} \neq 0$. Let F be an arc such that $F \cdot S \neq 0,(F) \subset e(S),(F) \subset \delta_{b}$, and $F \cdot(D \cdot B) \neq 0$. Let E be an arc such that $E \cdot S \neq 0,(E) \subset e(S),(E)+E \cdot S \subset \lambda_{e}$, and $E \cdot B=F \cdot B$. Let G be an arc such that $(G) \subset i(S)$ and $G \cdot S$ $=(E+F) \cdot S$. The set $E+F+G$ is a simple closed curve J, intersecting L only in $i(S)$.

The set $L_{a}+c e(S)+F+B$ bounds a bounded domain ϕ_{a} containing points of $K \cdot c(L) \cdot \lambda_{i}$; and $L_{c}+c e(S)+F+B$ bounds a similar domain ϕ_{c}. For $L_{a}+c e(S)$ is obviously a continuum and $B+F$ contains a cut F_{a} of its complement. Of the two components of $c\left(F_{a}+L_{a}+c e(S)\right)$ which are bounded in part by $\left(F_{a}\right)$ let ϕ_{a} be the bounded one. The boundary of ϕ_{a} contains either $B \cdot B_{a}$ or $B \cdot B_{c}$ (suppose the former), but not of course both. Thus by elementary reasoning from the constructions used, it appears that $\phi_{a} \supset B_{a} \cdot c(B)$ and thus contains a component of $K_{a} \cdot \lambda_{i}$. In a similar way ϕ_{c} may be proved to contain a component of $K_{c} \cdot \lambda_{i}$. Moreover $\phi_{a} \cdot \phi_{c}=0$ and if $i(J) \supset \phi_{a}$ then $e(J) \supset \phi_{c}$ and vice versa. To be explicit, assume that $i(J) \supset \phi_{a}$.

That the domain λ_{e} contains an uncountably infinite number of components of $\lambda_{e} \cdot K$ each of which has a disconnected set of limit points in H will now be shown. Since $i(J) \supset \phi_{a}$ and $e(J) \supset \phi_{c}$, both $i(J)$ and $e(J)$ contain points of $K \cdot c(H)$ and thus contain points of every composant of K. Let $\left[Q_{\alpha}\right]$ be a collection of subcontinua of K, one and only one in each composant of K, and each one having both a point in ϕ_{a} and a point in ϕ_{c}. The elements of $\left[Q_{\alpha}\right]$ are uncountable and mutually exclusive. Any one, Q_{d}, of $\left[Q_{\alpha}\right]$ has a point in Φ_{a} and one in Φ_{c}, where Φ_{a} and Φ_{c} are the boundaries respectively of ϕ_{a} and ϕ_{c}; so $Q_{a} \cdot \Phi_{a}=Q_{g} \cdot\left(L_{a}+S+F_{a}\right)=Q_{b} \cdot L_{a} \neq 0$, and also $Q_{b} \cdot L_{c} \neq 0$. It appears indeed that Q_{g} has a point in each of the mutually separated closed sets $L \cdot e(J) \cdot c i(S)$ and $L \cdot i(J) \cdot c i(S)$, and as these two sets contain $L \cdot K$ they contain $L \cdot Q_{0}$. In consequence $Q_{g} \cdot c(L)$ has a component G_{g} with a limit point in $L \cdot i(J)$ and a limit point in $L \cdot e(J)$. As $L \cdot i(J)$ and $L \cdot e(J)$ are mutually separated, the limit set of G_{g} is disconnected since it includes no point of J; and also $G_{g} \cdot J=G_{g} \cdot(E+F+G)=G_{g} \cdot E \neq 0$, so $G_{g} \cdot \lambda_{e} \neq 0$ and therefore $\lambda_{e} \supset G_{g}$. Regard now the components [K_{α}] of $\lambda_{\theta} \cdot K$ which contain the members of [G_{α}]. Each of these has limit points in both $i(J)$ and $e(J)$ and none in J, and so
has a disconnected limit set in L. No two of these are identical, for no one, such as K_{θ}, of them has $\bar{K}_{g}=K$ as it contains none of the points of K in $\phi_{a}+\phi_{c}$, and if K_{g} were to contain two of [G_{α}] then K_{v} would be a proper subcontinuum of K containing points of two different composants of K. Thus the collection [K_{α}] is one of the sort required.
Each set $K_{0}+L$ is therefore a subcontinuum of $K+L$ separating the plane, a bounded component of its complement being δ_{q}. No pair of elements, δ_{p} and δ_{q}, of [$\left.\delta_{\alpha}\right]$ can have a point in common unless one contains the other, for $K_{p} \cdot K_{q}=0$. Moreover if $\delta_{p} \supset \delta_{q}$ then $\delta_{p} \supset K_{q}$, and so $\delta_{p} \supset \gamma$, a contradiction as $\gamma \supset \delta$ was unbounded. Thus [δ_{α}] is an uncountable collection of mutually exclusive domains in the plane, another contradiction establishing at last the lemma for this case.

None of the undiscussed suppositions made above requires any more justification than a suitable inversion of the plane except the assumption that L is irreducible between a and c. But if L is not irreducible between a and c, then it contains a subcontinuum W which is irreducible between a and c. By examining K and W it may be seen that the hypotheses of the lemma are fulfilled, so that the set $c(K+W)$ has no component with boundary $K+W$. Neither then does the less inclusive set $c(K+H)$.

Theorem. If $\left[D_{i}\right]$ is a simple infinite sequence of plane point sets such that, for each positive integer i, D_{i} is indecomposable and $D_{i} \subset D_{i+1}$, and such that the set $\sum_{1}^{\infty} D_{i}$ is a plane bounded continuum Γ which is the frontier of γ, a component of its complement, then Γ is also indecomposable.

The theorem is obvious if no more than a finite number of [D_{i}] are distinct, as then Γ is identical with one of $\left[D_{i}\right]$. Assume accordingly that all of $\left[D_{i}\right.$] are different, other possible cases being not significant. Let $\sum_{1}^{\infty} D_{i}=D_{m}$ and $\Gamma-D_{m}=D_{n}$. Every point of D_{n} is a limit point of D_{m}, for $\Gamma=\overline{\sum_{1}^{\infty} D_{i}}=\overline{D_{m}}$ so $\overline{D_{m}} \supset D_{n}$. Every subcontinuum of D_{n} is a continuum of condensation of Γ, because when D_{n} contains the continuum K, then $\overline{D_{m}} \supset D_{n} \supset K$ implies $\overline{\Gamma-K} \supset \overline{\Gamma-D_{n}} \supset \overline{D_{m}} \supset K$. Moreover let d be a point of D_{m}. Now $D_{i+1} \supset D_{i}$ while $D_{i+1}-D_{i} \neq 0$, so D_{i} belongs to a single composant of D_{i+1}. Thus $\overline{D_{i+1}-D_{i}} \supset D_{i}$; that
is $\overline{\Gamma-D_{j}} \supset \overline{D_{j+1}-D_{j}} \supset D_{j}$, or D_{j} is a closed set nowhere dense in the closed set Γ. But this being true for any value of j ($j=1,2,3, \cdots$) then $\sum_{1}^{\infty} D_{j}=D_{m}$ must be a set of the first category in the closed set Γ. Thus D_{n} is a set of the second category in Γ everywhere dense in the set Γ. That is, $\overline{D_{n}} \supset D_{m}$ so $\overline{D_{n}} \supset d$. Consequently every subcontinuum of D_{m} is a continuum of condensation of Γ, for when $D_{m} \supset K$, then $\overline{D_{n}}=\Gamma$ implies that $\overline{\Gamma-K} \supset \overline{\Gamma-D_{m}} \supset \overline{D_{n}} \supset K$. Henceforth consider γ unbounded.

The argument will be completed by showing that every proper subcontinuum of Γ is a continuum of condensation of Γ. Let K be such a continuum and, as the cases $D_{m} \supset K$ and $D_{n} \supset K$ have already been dealt with, suppose that $K \cdot D_{m} \neq 0$ and $K \cdot D_{n} \neq 0$. Clearly $K ゅ D_{m}$ for $K \supset D_{m}$ would imply $K=\Gamma$. There must be some element of $\left[D_{i}\right]$ contained in part but not entirely by K. Let D_{k} be such an element. Thus, if $i>k$, the element D_{i} can not be a subset of K, for $K \supset D_{i}$ implies $K \supset D_{i} \supset D_{k}$.

Suppose that the set $\overline{D_{k} \cdot c(K)}=\Gamma_{k}$ is not connected. As $D_{k}+K \subset \Gamma, c\left(D_{k}+K\right) \supset c(\Gamma) \supset \gamma$. Thus there is a connected domain γ_{k} complementary to $D_{k}+K$ such that $\gamma_{k} \supset \gamma$. As $\bar{\gamma}_{k} \supset \bar{\gamma} \supset \Gamma$ then $\bar{\gamma}_{k} \supset D_{k}+K$. But $\bar{\gamma}_{k}=\gamma_{k}+B_{k}$, where B_{k} is the boundary of γ_{k}, and so $\bar{\gamma}_{k} \supset D_{k}+K$ implies $B_{k} \supset D_{k}+K$. Let G be a component of Γ_{k} containing the end of a ray R_{g} contained except for its end in γ_{k}. As every component of Γ_{k} consists of limit points of γ_{k}, and Γ_{k} is not connected, there is another component H of Γ_{k} containing the end of another ray $R_{h},\left(R_{g} \cdot R_{h}=0\right)$, which is except for its end contained in γ_{k}.

Now there exists a simple closed curve C such that $i(C) \supset G$, $C \cdot \Gamma_{k}=0, e(C) \supset H+R_{h}$, and $C \cdot R_{g}$ is a single point. Upon tracing C in opposite directions from $C \cdot R_{g}$, first points of $D_{k}+K$ are clearly encountered. Let the subarc of C thus identified be B. But $(B) \cdot\left(D_{k}+K\right)=0$ by selection, and $B \cdot\left(D_{k}+K\right) \subset B \cdot\left(\Gamma_{k}+K\right)$ с $C \cdot \Gamma_{k}+B \cdot K \subset B \cdot K \subset K$, so B is a cut of the unbounded complementary domain γ_{d} of K. Thus $\gamma_{d}-(B)$ consists of two domains, a bounded one γ_{b} and an unbounded one γ_{u}. As $R_{h} \cdot(B+K) \subset R_{h} \cdot(C+K) \subset R_{h} \cdot C+R_{h} \cdot K=0$, then $\gamma_{u} \supset R_{h}$, and thus $\gamma_{u} \cdot D_{k} \neq 0$, for indeed $\gamma_{u} \supset H$. Upon considering γ_{b} it may be seen with reasonable ease that the single point $B \cdot R_{g}$ separates R_{g} into two parts, the unbounded one of which is a subset of γ_{u} whereas the bounded one is a subset of γ_{b}. As the end of
the bounded part is in G, then γ_{b} also contains points of Γ_{k} as it contains G. These facts make it clear also that the ends of B are distinct, for if identical they would coincide with a cut point of the continuum D_{k}, although D_{k} is indecomposable.

A contradiction of the lemma now appears, for this is the situation: the plane continuum D_{k} is indecomposable and bounded and K is a bounded continuum such that $K \cdot D_{k} \neq 0$, the set K contains two distinct points connected in $c\left(D_{k}+K\right)$ by an arc B having only its ends in common with $D_{k}+K$ and separating the component of $c(K)$ which contains it into two domains γ_{b} and γ_{u}, both γ_{b} and γ_{u} contain points of D_{k}, and there is a component of $c\left(D_{k}+K\right)$ whose boundary is identical with $D_{k}+K$. As this is ridiculous, the set Γ_{k} is connected as was to be proved.

But if K is not a continuum of condensation of Γ, there exists. a point s of K and a circle S such that $i(S) \supset s$ and $e(S) \supset \overline{\Gamma-K}$. But $\overline{D_{m}}=\Gamma$ so $i(S) \cdot D_{m} \neq 0$; that is, there exists a subscript q such that $i(S) \cdot D_{q} \neq 0$. For any subscript $j>q$, then $i(S) \cdot D_{j} \neq 0$ as $i(S) \cdot D_{j} \supset i(S) \cdot D_{q} \neq 0$. Let r be a natural number greater than k and greater than q. Then $\overline{D_{r} \cdot c(K)}=\Gamma_{r}$ is non-vacuous and connected as has been seen already. But $\Gamma_{r} \cdot i(S) \subset \overline{\Gamma-K} \cdot i(S)=0$, so Γ_{r} fails to contain any point of the non-vacuous set $i(S) \cdot D_{r}$. Therefore Γ_{r} is a proper subcontinuum of D_{r}, and must accordingly belong to a single composant D_{r}^{a} of D_{r}. As $D_{r} \cdot c(K) \neq 0$ by supposition, there are points of D_{r} not in K. But let $D_{r}{ }^{b}$ be a second composant of D_{r}. As $D_{r}{ }^{a} \supset \Gamma_{r}$, then $D_{r}{ }^{b} \subset K$. Accordingly $\overline{D_{r}{ }^{b}} \subset K$, and as $\overline{D_{r}{ }^{b}}=D_{r}$, finally $D_{r} \subset K$, a contradiction.

As the contradiction is now general, the theorem is proved.

[^2]
[^0]: * If X is a point set then $c(X)$ is the complement of X.
 \dagger If X is an arc then (X) is X with ends omitted.

[^1]: * If S is a simple closed curve, its interior is $i(S)$ and its exterior is $e(S)$. Accordingly $c i(S)=S+e(S)$ and $c e(S)=S+i(S)$.

[^2]: Louisiana State University

