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CYCLIC RELATIONS IN POINT SET THEORY* 

BY E. C. STOPHER, JR. 

I. Introduction. The formula 

(1) <f>c<f>c4>c4>A = 4>c<f>A, 

where c denotes the operation of taking complements and 0 is 
an arbitrary operator, is of considerable interest in the study of 
sets of points. Kuratowskif proved that the formula holds for 
a postulated closure or extension function. ZaryckiJ established 
the formula in case <j>A is the "interior" of A and Sanders § es
tablished it for a general derived set operator satisfying the 
postulates : 

I . d(A + B) = dA + dB, 

I I . d2A S dA. 

In this paper we shall follow the established || practice of post
ulating a derived set operator d, subject to I and II , and, using 
a notation introduced by Chittenden, define certain terms as 
follows : 

Identity : \A = A ; 
Complement'. cA = S — A (S denotes the entire space) ; 
Extension :̂ f eA = A + dA; 

* Presented to the Society, April 10, 1937. 
t C. Kuratowski, Sur Vopération Â de Vanalysis situs, Fundamenta Mathe-

maticae, vol. 3 (1922), pp. 182-199. 
% M. Zarycki, Notions fondamentales de Vanalysis situs, Fundamenta 

Mathematicae, vol. 9 (1927), pp. 3-15. 
§ S. T. Sanders, Jr., Derived sets and their complements, this Bulletin, vol. 42 

(1936), pp. 577-584. 
|| F . Riesz, Stetigkeitsbegriff und abstrakte Mengenlehre, Atti del 4 Congresso 

Internationale dei Matematici, Roma, 1910, vol. 2, p. 18; Chittenden, On gen
eral topology and the relation of the properties of the class of all continuous func
tions to the properties of space, Transactions of this Society, vol. 31 (1929), 
pp. 290-321. 

1f F. Hausdorff, Mengenlehre, pp. 109-129. Under the postulates given, the 
derived set corresponds to HausdorfFs set of jö points, Ap. The extension corre
sponds to his a points, Aa. Similarly, hA corresponds to An, jA to Aj, bA to Ar 

(border is a translation of the German word "rand"), kA to Ah, and s A to As. 
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Interior: iA = AcdcA; 
Concentrated part: h A = AdA; 
Isolated part: jA = AcdA; 
Border: bA = AdcA ; 
Frontier: f A = AdcA + cAdA; 
Kernel: kA = J^B^A, such that B^ dB; 
Separated part: s A — AckA. 

In §§2-7 it will be shown that each of these operators except 
b and h satisfies the Kuratowski formula. I t might be pointed 
out that these operators do not all have the same basic proper
ties. In contrast to Postulates I and II we have, for example, 

HA + B) ^ iA + iB, 

i(AB) = iAiB, 

i2A = iA, 

f(A+B)£fA+fB, 

f A £fA. 

This list of operators is by no means a complete list of opera
tors satisfying the Kuratowski formula, as can be readily seen 
by considering the formula 

(2) pA = pA. 

We have the proposition that if an operator 0 satisfies formula 
(1) ((2)), its transform* satisfies (1) ((2)) and its complement 
satisfies (2) ((1)). We make use of this proposition in §8 to ob
tain additional operators satisfying the Kuratowski formula. 

Examples will be given in §9 to show that the b and h opera
tors do not in general satisfy the Kuratowski formula. I t will 
be shown in §§10 and 11 that each of (bcybA and (hc)phA with 
increasing /3 defines a set. 

2. Identityf Complement. The identity operator can be used 
in the Kuratowski formula since, on account of the relation 
c2A =A, each side of the equation reduces to cA. I t is readily 
seen also that the complementary operator can be used in place 
of (/>, each side of the equation again reducing to cA. 

* An operator 0 is said to be the transform of an operator \f/f if <j>A = c\f/cA ; 
it is the complement of the operator f, ifJ>A —c^A. 
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3. Extension, Interior. The general "defined" extension func
tion satisfies the Kuratowski formula since this function satisfies 
Kuratowski's postulates I, II , and IV, which Kuratowski* 
showed were sufficient. We immediately have 

icicle iA = ici A , 

since the interior and extension operators are transforms of each 
other. 

4. Frontier. Since fcA=fA, fA=bfA, and b2A=bA, both 
fcfcfcfA and fcfA reduce to bfA, establishing the formula 

fcfcfcfA =fcfA. 

5. Isolated Part. By definition, 

jA = AcdA, 

cjA = cA + hA, 

jcjA = (cA + hA)cdcAcdhA 

= cAcdcAcdhA(cdjA + djA) + hAcdhAcdcA 

— cAcdcAcdhAcdjA + cAcdcAcdhAdjA 

+ AdAcdhAcdcA 

= cAcd(cA + hA + jA) + cAcdcAcdhAdjA 

+ AdjAcdhAcdcA 

= cAcdS + djAcdhAcdcA(cA + A) 

= ƒ c4 + jdScdcA . f 

Replacing 4̂ by cjA, we have 

jc/V^ = JjA + jdScdjA 

= J A + ydScrf^, 

since aL4 =cdjAcdhA and cd/L4 includes j d 5 . Again replacing 4̂ 
by cjA, we obtain 

jcjcjcjA = ƒ c/4 + jdScdcjA 

= / G 4 + ƒ A4 + jdScdcAcdhA 

= JcA + jdScdcA , 

* C. Kuratowski, loc. cit. 
f J=cdS. Symbol used by Sanders, loc. cit. 
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again because cdhA includes cd2S, which in turn includes jdS. 
This establishes the formula 

jcjcjcjA = jcjA. 

6. Separated Part. By definition, 

sA — AckA, 

csA = cA + kA, 

scsA = (cA + kA)ckcsA. 

To evaluate the set kcsA we make use of the fact that for 
any set B, kB is equal to the limit as /3 increases of MB. By 
definition, 

hcsA = {cA + kA)(dcA + dkA) 

= Z ^ + dkA, 

since the product of s A and d M is null ; and 

h2csA = (hcA + dkA)(dhcA + dkA) 

= h2cA + ^ i , 

dkA being perfect, that is, d2kA =dkA. Continuing, we see that 

hPcsA = WcA + dkA, 

kcsA = kcA + dkA = c£4&S\ 
Hence, 

c&c^4 = ŝ 4 + sS, 

ses A = (c4 + kA)(sA + sS) 

= c4sS, 

kA being a subset of kS and not of s»S. 
Substituting csA for .4, we have 

scscsA = sAsS = AsS. 

Again substituting csA for ^4, we obtain 

scscscsA = C&4&S' = cAsS + &4 sS 

= c^4sS, 

establishing the formula 

scscscsA = scsA, 
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7. Kernel. By definition, 

kA = AcsA, 

ckA = cA + sA, 

kckA = kcA + sAdkcA. 

Substituting ckA for A, we have 

kckckA = &M + sckAdk2A 

— kA + sckAdkA. 

We observe that 

sckA — ckAckckA 

= (cA + sA)ckcA(csA + cdkcA) 

= scA + £/4a/&&4 

= sĉ 4 + AsS, 

since sAcdkcAkS = 0. Therefore, 

kckckA — kA + (SG4 + AsS)dkA 

= kA + scAdkA. 

Again substituting ckA for A, we have 

kckckckA = k M + s^4d&£&;l 

= kckA, 

since s^4 = 0 . 

8. Additional Operators. Since the transforms of operators sat
isfying the Kuratowski formula also satisfy it, we immediately 
obtain the fact that the following operators satisfy the Kuratow
ski formula: cdc, cjc=(l+hc), cfc=(i+ic)f ckc=(l+sc), and 
csc = (1+kc). 

Since e, i,j, 6, ƒ, k, and s are known to satisfy equation (2), it 
follows immediately that ic, (c+dc), (c+h), (c+i)9 (i+ic), 
(c+s), and (c+k) satisfy the Kuratowski formula. 

9. Examples. Equation (1) will not hold in general for <j> equal 
to either of the remaining two operators, b and h, as the follow
ing examples show. 
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Let the space 5 be the closed linear interval (0, 1). Let the 
set A be the points (1/2, 3/4, 7/8, • • • ). Then, 

h A = A, 

bcbA = 1, 

bcbcbA = null, 

bcbcbcbA = null 

^ bcbA. 

For the second example, consider the same space S but in
clude also the point 1 in the set A. Then, 

h A = 1, 

hchA = S - 1, 

hchchA = null, 

hchchchA = 5 

9^ hchA, 

Although equation (1) does not hold for either b or h, it is 
interesting to note in these examples that 

bcbcbcbcbA = bcbcbA , 

hchchchchA = hchchA . 

10. Border. Examining further the operator ô, we see that 

cbA = cA + iA, 

and 

bcbA = M + iA)dbA 

= bcAdbA, 

since dL4 is included in ƒ4 rather than in iA. 
Substituting cbA for 4 and making use of the fact that c2 = 1 

and b2 = b, we have 

bcbcbA = bccbAdbcbA 

= bAdbcbA 

^ bA. 

Thus we see that we have two monotonie decreasing se-
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quences of sets, {bc)^bA and (bc)2P+lbA, 0 = 1 , 2, 3, • • • . Chit
tenden has pointed out that, since a set is determined by every 
product IL4|3, (|8 = 1, 2, 3, • • • ), where [Ap] represents a mono-
tonic decreasing sequence of sets, each of these sequences defines 
a set and we have implied that for all ordinals a greater than or 
equal to some finite or transfinite ordinal ceo, 

(bc)«+2bA = Q>c)"bA. 

11. Concentrated Part. Similarly, it can be shown that, with 
increasing /3, Qic)2^hA defines a set. We have 

hA = AcjA, 

chA = cA + jA , 

hchA = (cA + jA)(dcA + djA) 

= hcA + jAdcA + cAdjA. 

Substituting chA for A, we may write, 

(hc)2hA = AM + jckAdhA + hAdjchA. 

However, 

jVM = (c l̂ +/4)cd&4cd[;;4 

= cAcdcAcdjAcdhA + cAcdcAcdjAdhA 

+ jAcdcA, 

jA being included in cdjM. This simplifies to 

jchA = cAcd(cA + jA + hA) + jcAcdjcAcdjAdhA 

+ -4aL4cd&4 

= / c 4 + JM + i c 4 ^ 5 

= / + jcAidS, 
and we have 

(hc)2hA = h2A + (J +jcAidS)dhA + hA(dJ + djcAidS) 

= kA + sh2A + JcAidS + shAdJ 

= (L4 + jcAidS)dkA + sh2AidS + shAdJ', 

since AM = M M +sAM and M 4 = fe4. 
Again substituting chchA for A, we have 

(hc)AhA — (kchchA + j hchA idS)dkc hchA 

+ sh2chchAidS + shchchAdJ. 



1937-1 CYCLIC RELATIONS 693 

But, 

kchchA = khchchA = kA + jcAidS, 

dkchchA = J M + d(jcAidS) = dkA, 

jhchAidS = idS(hcA + jAdcA 

+ cAdjA)cdhcAcd(jAdcA)cd(cAdjA) 

= idS\jhcAcd(cAdjA)cd(jAdcA) 

+ j(cA djA ) cd he A cd (JA dcA ) 

+ i 0*̂ 4 d&4 ) c dAa4 cd(a4 d£4 ) ] 

= idS -j he A , 

sh2chchAidS = h(sh2AidS) = shUidS, 

shchchAdJ = shAdJ. 

Making these substitutions, we obtain 

(Ac)4M = (L4 + JcAidS + jhcAidS)dkA + sA^idS 

Continuing, we have 

+ shf>+1AidS + shAdJ. 

Since 

sa<4 = jcA + j'A&4 + yA2&4 • • • 

= Ytjh'cA, 

and s¥cA=¥scA^0, with increasing /3,* it is apparent that 
with increasing /?, 

(Ac)2^M -> (kA + scAidS)dkA + shAdJ 

= (kA + s ^ i d S + hAdJ, 

and this establishes the proof. 

* —> is the ordinary symbol for convergence; Ap^>A, with increasing /3, 
is equivalent t o l l ( ^ c ^ + ^ c ^ ) =0, (0=1, 2, 3, • • • ). 
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12. Summary. The results of §§2-7 can be summarized in the 
following theorem : 

THEOREM. The Kuratowski formula, 

(j>c(l>C(j)C(j)A = (j>c<t>A, 

is satisfied for<j> equal to any of the operators l,c,d, e, i,j,f, k, and s. 

Sections 10 and 11, together with this theorem, imply the fol
lowing corollary : 

COROLLARY. The equation 

{<j>c)a^A = {^cY(t>A 

holds for every ordinal a equal to or greater than some finite or 
transfinite ordinal ao, and for 0 equal to any of the operators l,c,d, 
e, i, h,j, b,f, k, and s. 
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A CONDITION THAT A FIRST BOOLEAN 
FUNCTION VANISH W H E N E V E R A 

SECOND DOES NOT 

BY J. C. C. MCKINSEY* 

It is well known f that if two polynomials ƒ(xx, • • • , xn) and 
g{x\, • • • , xn) in the field of complex numbers are such that ƒ 
vanishes whenever g does not, then at least one of the two poly
nomials /and g is identically zero. The corresponding law, how
ever, does not, in general, hold for Boolean functions, as may 
be seen by considering the two functions x and x' in a two-
element Boolean algebra; the statement that either x = 0 or else 
x'= 0 in a two-element Boolean algebra is, indeed, the familiar 
law of excluded middle. I t is the purpose of the present note to 
determine the conditions on the coefficients of two Boolean func
tions in order that the first vanish whenever the second does not. 

The condition found involves prime Boolean elements, which 
are defined as follows : 

* Blumenthal Research Fellow. 
t See, for example, Bocher, Introduction to Higher Algebra, p. 8. 


