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A NOTE ON T H E CESÀRO METHOD OF 
SUMMATION* 

BY J. H. CURTISS 

1. Introduction. A sequence {Sn}, or a series ^ U n with par
tial sums Sni is said to be summable by the Cesàro mean of 
order a, or summable (C, a), to the sum 5, if <rn

a = Sf/A£ —>s,f 
where 5n

a and ^4w
a are given by the following relations: 

/<w< N-*-1 V^ ,« w ,« ( a + l)(a + 2) • • • (a + «) 
(1) (1 - *) = 2 l ^ n a i An = ; ; 

n\ 
(2) Yu SnX1 = (1 — X) "YlSnx" = (1 — X) X UnX

n\ 
n n 

àn
 = / j A.n_vOv

 == / j J±n—vUv) 

and where a is any complex number other than a negative in
teger. % We shall restrict ourselves in this note to real orders of 
summability. It is known that if a sequence or series S is sum
mable (C, a), a> — 1, it is summable (C, a7)» oi'>a} to the same 
sum.§ If a sequence or series 5 is summable (C, a) for all a^y, 
then the lower limit of all such possible values of y is called by 
Chapman || the index of summability of S. 

It is sometimes easier to find the indices of summability 
and the sums of certain subsequences of a sequence 5 than 
to find the index and sum of S itself. As a trivial example, 
let \Sn} be the sequence of partial sums of Leibniz's series 
1 —1 + 1 — 1 + • • * . Then 52& = 1, 52A;+i = 0, and it is easily seen 
that {Sïk} is summable to the value 1 and {S2fc+i} to the value 
0 by the Cesàro mean of any order. It is the purpose of this note 

* Presented to the Society, September 9, 1937. 
t Superscripts will not denote exponents when applied to capital letters and 

to the letter a. 
% For a systematic account of the Cesàro method, see Kogbetliantz, Sum-

mation des Séries et Intégrales Divergentes par les Moyennes Arithmétiques et 
Typiques, Paris, 1931. 

§ Kogbetliantz, op. cit., p. 17. 
|| Proceedings of the London Mathematical Society, (2), vol. 9 (1911), pp. 

369-409; p. 378. 
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to investigate the relation between the Cesàro sum of a sequence 
and the Cesàro sums of equally spaced subsequences. We shall 
also generalize a remark of Chapman concerning diluted series. 

2. The Sum in Terms of the Sums of Subsequences. Let 

n 

/ J An-vS\v+H 

(3) (TH,n = -
A « 

where X is any positive integer and O^iJ^X— 1. 

THEOREM I. If for some a > 0 , a%n—>sn, i l = 0 , 1, • • • , X —1 
(uniformly with respect to any set of parameters (y) on which the 
terms of the sequence {Sn} may depend), then < r n

a ^ ( X ^ o 5 # ) A 
(uniformly in (y)). 

PROOF. Let K be any integer such that O^K^X — 1, and let 
-4*ô = 0for * < 0 . Then 

where L = 

(4) 

I \n+K 
V\n+K = — 2~i A\n+K-vSv 

A\n+K v=0 

1 X - l n 

1 v 
2-1 TH,L,n, 

= K-H and 

X V A-1 «J Tn = TH,L,n = —; 2^1 A\{n-~v)+Là\v+H* 
A\n+K v=0 

We shall prove that rn—>SH uniformly in (y), which will clearly 
suffice to prove the theorem. Our procedure is essentially this: 
Let Cr1 be the inverse of the matrix of the transformation (3) 
and let T be the matrix of the transformation (4). We show that 
rCoT1 satisfies the Silverman-Toeplitz regularity conditions.* 

* See, for instance, Carmichael, this Bulletin, vol. 25 (1918), pp. 97-131; 
p. 109. The method of proof used in this note is discussed in the same reference 
on pp. 112-113. The author is indebted to R. P. Agnew for the suggestion that 
the procedure be explained in terms of matrices. 
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We shall arrange the work in such a way that the order of 
magnitude of the quantity rn — sH will be exhibited. 

In the sequel, A" will be defined by the first formula of (1) 
for all values of a, including negative integers. By means of (2), 
the inverse of the transformation (3) is easily found to be 

E — a— 1 a a 
Av_k AkVH,k-

fc=0 

If we replace o-#fW by s#+€#,n , substitute in (4), and rearrange 
terms, we have 

n , n 

Z a—1 ç̂—\ a 

\ ;4x(n_„) + L X 2 ^ €H,VAvB\(n-v) + L 
Tn = — 1 — = Si + r 2 , 

where Bn is given by the relation ^Bnx
n= (1 — xx)a(l —x)~a. 

Now let An = Si — SH. Then 

X - l n - l a_1 a _ 1 a _ 1 L a_x 

2^ Zs (A\V+L — A\v+is) + \A\n+L — 2-J A\n+k 
k=0 r = 0 /b=0 

A n = sH 

Letting ôn=YZ-o(AV+L-AZ+*), we prove that «„ = 0(1) 
+ 0(wa_1). The result is immediate if a = l. Suppose a ^ l , and 
L^k; the proof is similar if L<k. We have 

n—1 L— k— 1 n—1 L—fc—1 

(5) bn — 2^ 2-/ C^Xy+L-fc — A\v+L-h-l) — Z~, 2^/ A\v+L-h. 
j/=0 Ji=0 v=0 h=Q 

We make use of the following lemma of Andersen :* 

è I A?AZ, I = o(»~*) + o(^"7) + o(^~"+1), 

provided that —/?, — 7, and —18 — 7 + 1 are not negative in
tegers. If —/3 —7 + I is a negative integer, the equation reads 
as follows : 

S I A?A~Z, I = 0(n~*) + 0{n~y). 

* Andersen, Studier over Cesâros Summabilitetsmetode, K^benhavn, 1922, 
pp. 22-23. 
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When the lemma is applied to (5), our assertion concerning the 
order of 8n is established at once. 

It follows (see (7) below) that 

(6) An = 0(n~«) +0(trl). 

Equation (6) expresses the fact that the sums of the rows of 
matrix TC^r1 converge to unity, which, of course, is one of the 
three Silverman-Toeplitz regularity conditions. 

Turning to 22 , we first observe that | j5 n | ^Mil^rT"" - 1! , 
where M± is independent of n. The remark is obvious if X = 2, 
or if a is an integer; and in the general case, the reader will have 
no difficulty in supplying an induction proof based on Ander
sen's lemma and on the fact t h a t ^ 5 n x n =H£-}(1 —aPx)"> where 
\ap\ = 1. Our second observation is that the well known relation 

(7) An&n/T(ô + 1 ) , Ô * - 1, - 2, • • • , 

gives us the inequality \A{n\ S M%1An
8|, M2 independent of n, 

which is valid for all real values of ô. From these remarks it 
follows that 

n 1 

E l AaA~ I 

I I " = 0 

22 ^ M i 

è MiM2 

A\n+K 

a _ a _ i | 
| en,vA 

v=0 
]T) I €H,vAvAn-

At \n+K 

Now 

AaA " l 

sip si n—v (8) —~a = "(1) 
A\n+K 

for any fixed value of v, by (7), and 

n i 

T\ A°A \ 

(9) ^-rm = 0 ( 1 ) 
A n+K 

by (7) and by the lemma of Andersen if a is fractional, other
wise because An~

a~1 = 0 for sufficiently large values of n. It fol-
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lows as in the proof of the Silverman-Toeplitz Theorem that if 
€#,w—>0 uniformly in (y), S2 behaves likewise. Equations (8) 
and (9) express the fact that the matrix TC^1 satisfies the re
maining two regularity conditions. 

3. Degree of Convergence. The proof of the theorem is now 
complete. To summarize, we have shown that whether or not 
the numbers €H,n—*0, we have 

( -a - 1 - a X _ 1 U a -a-1 \ 

n + n + n X, 2-J 
(K = 0j 1, • • • , X — 1), where M is independent of n and K, and 
S = (^H~J0SH)/^; and further, that if e#,n—*0 uniformly in (y), 
(H = Q, 1, • • • , X — 1), then o-n

a —>s uniformly in (y). 
By considering the sequence 1, 0, 1, 0, • • • , the reader will 

have no trouble in showing that the first two terms of our esti
mate of I (Txn+fc — s\ in (10) cannot be improved. If certain restric
tions are placed on the sequences {e#,n}, it can be proved that 
the third term in the right hand member of (10) is 0(en). We shall 
amplify this statement only by mentioning two special cases: 
(a) If <ra

Htn-sH = O(n-8),(H = 0, 1, • • • , X - l ) , uniformly in (y), 
then cr«—s = 0(n-l)+0(n-a)+0(n-b) uniformly in {y). 
(b) If <T%n-sH = oin-°\o%n), (fl" = 0, 1, • • • , X - 1 ) , uniformly 
in (y), then o-n

a — 5 = 0(w_1)+O(n~alog n).* 

4. The Sum in Terms of the Sums of Sub series. Chapman 
called a series "uniformly diluted" if between every pair of 
terms of the series is placed a constant number of zero terms, f 
His conjecture J that uniform dilution can affect neither the sum 
nor the summability of a series is a special case of the following 
theorem. 

THEOREM II . If^2,U\n+H is summable (C, a) to the sum uH> 
(H = 0, 1, • • • , X —1), for some a> — 1 (uniformly with respect 

* The author encountered the problems solved in this note while generaliz
ing certain results concerning the Taylor series on the circle of convergence. 
The importance of the two special cases considered here is due to Szâsz's work 
on the degree of summability of the Fourier series, Acta Szeged, vol. 3 (1927), 
pp. 38-48. 

f Loc. cit., p. 404. 
t Ibid. 
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to any set of parameters (y) on which the terms of the series X) Un 

may depend), then ^2Un is summable (C, a) to the value ^2]fJ0UH 
(uniformly in (y)). 

The close connection between this theorem and Theorem I 
is apparent when we notice that 

/ H n X—1 n—1 \ 

VH,n = ( 2^ /_j An-.vU\v+h + Z^ Z^t An_vU\v+h J /An. 

Since the conclusion of Theorem I is not true for a^O (see §5 
below), a general proof is more conveniently given by the meth
ods of §2 than by reference to this theorem. Equation (3) is to be 
replaced by the transformation <r#,n = ÛL%=QA°Ï1_VU\V+H) / A^ and 
(4) by the transformation rn' = (£n

v=oAl{n-v)+LU\v+H)/A"n+k. The 
reader will have no difficulty in filling in the details. 

5. Discussion. Of course the converse of neither Theorem I 
nor Theorem II is true. In certain senses the theorems cannot be 
strengthened. In the first place, the index of summability of 
a sequence or series may be equal to the greatest of the indices 
of the subsequences or subseries. An example is the series 
1 + 0 - 2 + 0 + 3 + 0 - 4 + 0 + • • • , whose index is 1. (We remark 
furthermore that this series is not summable (C, 1).) Again, the 
conclusion of Theorem I is false for a<0, even if the sums s H 
be equal, as the reader may show by examining the sequence 0, 
A0

S, 0, A!8, 0, ^42
5, • • • , where - K a < K 0 , Finally, the con

clusion of Theorem II is false for a< — 1; an example is the 
series 0 + ^ 0

5 + 0 + ^ i ô + 0 + ^ 2
ô + • • • , where - 2 < a < < 5 < - l . 

CORNELL UNIVERSITY 


