ON SYMMETRIC DETERMINANTS

BY W. V. PARKER

In a former paper* the writer proved the following theorem:
Theorem A. If $D=\left|a_{i j}\right|$ is a symmetric determinant of order $n>4$ with $a_{i j}$ real and $a_{i i}=0,(i=1,2, \cdots, n)$, and if all fourthorder principal minors of D are zero, then D vanishes.

The purpose of this note is to give some results which are obtained immediately from this theorem and which are in one sense a generalization of this theorem.

Suppose D is a symmetric determinant of order $n>4$, with real elements, in which all principal minors of order $n-1$ and also all principal minors of order $n-4$ are zero. If $D^{\prime}=\left|A_{i j}\right|$ is the adjoint of D, then $A_{i i}=0,(i=1,2, \cdots, n)$. Each fourthorder principal minor of D^{\prime} is equal to the product of D^{3} by a principal minor of D of order $n-4 . \dagger$ Therefore D^{\prime} satisfies the conditions of Theorem A and hence is zero. But $D^{\prime}=D^{n-1}$ and hence D is also zero and we have the following theorem:

Theorem 1. If D is a symmetric determinant of order $n>4$, with real elements, in which all principal minors of order $n-1$ and also all principal minors of order $n-4$ are zero, then D vanishes.

Suppose D is a symmetric determinant of order $n>4$, with real elements, in which all principal minors of some order $k>3$ and also all principal minors of order $k-3$ are zero. Let M be any ($k+1$)-rowed principal minor of $D,(M=D$ if $n=5)$, then M is a determinant satisfying the conditions of Theorem 1 and hence M is zero. Therefore, in D, all principal minors of order k and also all principal minors of order $k+1$ are zero, hence D is of rank $k-1$ or less. \ddagger We have thus proved the following theorem:

[^0]Theorem 2. If D is a symmetric determinant of order $n>4$, with real elements, in which all principal minors of some order $k>3$ and also all principal minors of order $k-3$ are zero, then D is of rank $k-1$ or less.

If $n>5$, and $k<n-1$ the minors of Theorem 2 may be divided into two complementary sets such that if all minors of either set are zero the determinant vanishes. This division into sets may be done in n different ways.

Suppose D is a symmetric determinant of order $n>5$, with real elements, and M is a principal minor of D of order $n-1$. If all principal minors of M of some order $k>3$ and also all principal minors of M of order $k-3$ are zero, then M is of rank $k-1$ or less by Theorem 2. Let us suppose now that M is in the upper left hand corner of D and expand D according to the products of the elements of the last row and the last column. We get

$$
D=a_{n n} M-\sum_{i, j=1}^{n-1} a_{n i} a_{j n} \alpha_{i j}
$$

where $\alpha_{i j}$ is the cofactor of $a_{i j}$ in M. If now we make the further restriction that k be less than $n-1$, then, since the rank of M is $k-1$ or less, each $\alpha_{i j}=0$ and consequently $D=0$. We have, therefore, the following result:

Theorem 3. If D is a symmetric determinant of order $n>5$, with real elements, and M is a principal minor of D of order $n-1$, and if all principal minors of M of some order $k, 3<k<n-1$, and also all principal minors of M of order $k-3$ are zero, then D vanishes.

Suppose D is a symmetric determinant of order $n>5$, with real elements, and that M is a principal minor of D of order $n-1$. Suppose also that all principal minors of D of some order $n-t$ and also all principal minors of D of order $n-t+3,(t>3)$, which are not minors of M, are zero. We may assume further, without loss of generality, that M is in the upper left hand corner of D. Let D^{\prime} be the adjoint of D and M^{\prime} be the minor of D^{\prime} corresponding to M in D. Any principal minor of M^{\prime} of order t (of order $t-3$) is equal to the product of $D^{t-1}\left(D^{t-4}\right)$ by the complement in D of the corresponding minor in M. This com-
plementary minor is a minor of D of order $n-t(n-t+3)$ and is not a minor of M and hence is zero by hypothesis. Therefore M^{\prime} is a symmetric determinant of order $n-1>4$, with real elements, in which all principal minors of some order $t>3$ and also all principal minors of order $t-3$ are zero, and hence M^{\prime} is of rank $t-1$ or less by Theorem 2. If we make the further restric tion that t be less than $n-1$ we find, by expanding D^{\prime} according to the products of the elements of the last row and the last column, that D^{\prime} is zero. But $D^{\prime}=D^{n-1}$ and hence D is zero also.

If we write $n-t+3=k$, since $3<t<n-1$, we have $4<k<n$ and hence the truth of the following theorem is apparent:

Theorem 4. If D is a symmetric determinant of order $n>5$, with real elements, and M is any principal minor of D of order $n-1$, and if all principal minors of D of some order $k>4$ and also all principal minors of D of order $k-3$, which are not minors of M, are zero, then D vanishes.

In a second paper the writer* proved a theorem stated as follows:

Theorem B. If $D=\left|a_{i j}\right|$ is a symmetric determinant of order $n>5$, in which $a_{i i}=0,(i=1,2, \cdots, n)$, and M is any principal minor of D of order $n-1$, then if all fourth order principal minors of D which are not minors of M are zero, D vanishes.

From this theorem we see that the restriction that the elements of D be real is not necessary in Theorem A when n is greater than five. Consequently the theorems of this paper may be extended to include determinants with complex elements. Theorem 1 is true for complex elements if $n>5$. Theorem 2 is true for complex elements if $n>5$ and $k>4$. Theorems 3 and 4 are true for complex elements if $n>6$ and $4<k<n-1$.

Louisiana State University

[^1]
[^0]: * On real symmetric determinants whose principal diagonal elements are zero, this Bulletin, vol. 38 (1932), pp. 259-262. See also, On symmetric determinants, American Mathematical Monthly, vol. 41 (1934), pp. 174-178.
 \dagger Bôcher, Introduction to Higher Algebra, p. 31.
 \ddagger Bôcher, loc. cit., page 57, Theorem 2.

[^1]: * A theorem on symmetric determinants, this Bulletin, vol. 38 (1932), pp. 545-550.

