PROOF OF THE NON-ISOMORPHISM OF TWO COLLINEATION GROUPS OF ORDER 5184*

BY F. A. LEWIS

Introduction. Let S denote the collineation

$$
\rho x_{r}=\epsilon^{r-1} x_{r}^{\prime}, \quad(r=1, \cdots, n), \quad \epsilon=\cos (2 \pi / n)+i \sin (2 \pi / n)
$$

and T the collineation

$$
\rho x_{r}=x_{r+1}^{\prime}, \quad(r=1, \cdots, n), \quad x_{n+1}^{\prime} \equiv x_{1}^{\prime}
$$

The abelian group $\{S, T\}$ of order n^{2} is invariant under a group \dagger C_{n} of order

$$
n^{5}\left(1-\frac{1}{p_{1}^{2}}\right)\left(1-\frac{1}{p_{2}^{2}}\right) \cdots\left(1-\frac{1}{p_{m}^{2}}\right)
$$

where $p_{1}, p_{2}, \cdots, p_{m}$ are the distinct prime factors of n. The order of C_{6} is 5184 .

Winger \ddagger has discussed briefly the monomial group of order $(r+1)!n^{r}$ that leaves invariant the variety

$$
x_{0}{ }^{n}+x_{1}{ }^{n}+x_{2}{ }^{n}+\cdots+x_{r}^{n}=0 .
$$

This group is generated by the symmetric group of degree $r+1$ and an abelian group of order n^{r} in canonical form. For $r=3$ and $n=6$ there results a group G of order 5184 which has been treated by Musselman.§ The purpose of this note is to prove that G and C_{6} are not simply isomorphic. The proof consists in showing that the number of collineations of period 2 in G exceeds the number of collineations of period 2 in C_{6}.

[^0]Proof of the Non-Isomorphism of G and C_{6}. The group C_{6} is generated by $\{S, T\}$ and the two collineations

$$
\begin{array}{rll}
V: & \rho x_{r}=\sum_{c=1}^{6} \epsilon^{(r-1)(c-1)} x_{c}^{\prime}, & (r=1, \cdots, 6), \\
W: & \rho x_{r}=\epsilon^{-(r-1)^{2} / 2} x_{r}^{\prime}, & (r=1, \cdots, 6),
\end{array}
$$

satisfying the following relations:

$$
V^{4}=W^{12}=1, \quad V^{2} W=W V^{2}, \quad V^{-1} S V=T^{-1}, \quad W^{-1} S W=S
$$

$$
(V W)^{3}=V^{2}=(W V)^{3}, W^{6}=S^{3}, V^{-1} T V=S, W^{-1} T W=S^{-1} T
$$

The order of $H=\{V, W\}$ is 576. This group may be constructed by the following chain of invariant subgroups and an independent proof that the order of C_{6} is 5184 follows readily.

$$
H=\left\{V, G_{288}\right\}, \quad G_{288}=\left\{W^{5} V W^{3} V^{3}, G_{96}\right\}, \quad G_{96}=\left\{W^{2}, G_{32}\right\}
$$

$$
G_{32}=\left\{W^{2}\left(W^{2} V\right)^{2}, G_{16}\right\}, \quad G_{16}=\left\{\left(W^{2} V\right)^{3} V, G_{4}\right\}, \quad G_{4}=\left\{S^{3}, T^{3}\right\}
$$

Since G_{4} is contained in $\{S, T\}$ which is invariant under H, the order of C_{6} is $576 \cdot 36 / 4=5184$.

If Q, of order 144 , represents the quotient group of C_{6} with respect to $\{S, T\}$, each element of Q, being a co-set of C_{6}, represents 36 collineations of C_{6} that transform $\{S, T\}$ into itself according to the same isomorphism of $\{S, T\}$ with itself.* There are 24 collineations $S^{j} T^{k}$ of period 6 in $\{S, T\}$; if S is transformed into a particular $S^{j} T^{k}$, the collineation $S^{l} T^{m}$ into which T is to be transformed may be selected in six ways. Let K represent a class of 144 collineations of C_{6} corresponding to the 144 distinct possible sets (j, k, l, m). That is, K contains one and only one collineation from each of the 144 augmented co-sets of C_{6}. The square of $A \cdot S^{r} T^{s}$, an arbitrary collineation of the class K from the co-set to which A belongs, may be expressed in the form $A^{2} S^{u} T^{v}$ and hence is of period 2 only if A^{2} is in $\{S, T\}$. That is, a necessary condition that $A \cdot S^{r} T^{s}$ be of period 2 is that A^{2} be commutative with both S and T. Among any class K there are only 8 collineations B such that the corresponding sets of values (j, k, l, m) satisfy the congruences arising from the conditions that B^{2} transform S into S and T into T.

[^1]The following table shows 8 such collineations, their squares, and the collineations of $\{S, T\}$ which multiply these 8 collineations on the right to form collineations of C_{6} of period 2. The numbers in the last column show the total number of collineations of C_{6} of period 2 corresponding to each B of K. Thus it is seen that C_{6} contains just 99 collineations of period 2 .

It is easily shown that G contains more than 99 collineations of period 2 and hence G and C_{6} are not simply isomorphic.

University of Alabama

[^0]: * Presented to the Society, June 18, 1936.
 \dagger In fact, C_{n} is the largest collineation group in n variables containing $\{S, T\}$ invariantly, the coefficients and variables being in the field of complex numbers. (Author's dissertation, Ohio State University, 1934.)
 \ddagger Trinomial curves and monomial groups, American Journal of Mathematics, vol. 52 (1930), p. 394.
 §On an imprimitive group of order 5184, American Journal of Mathematics, vol. 49 (1927).

[^1]: * It may easily be proved that the 36 collineations of $\{S, T\}$ are the only collineations in six variables commutative with both S and T.

