PROOF OF THE NON-ISOMORPHISM OF TWO COLLINEATION GROUPS OF ORDER 5184*

BY F. A. LEWIS

Introduction. Let S denote the collineation

$$\rho x_r = \epsilon^{r-1} x_r'$$
, $(r = 1, \dots, n)$, $\epsilon = \cos(2\pi/n) + i \sin(2\pi/n)$,

and T the collineation

$$\rho x_r = x'_{r+1}, \qquad (r = 1, \dots, n), \qquad x'_{n+1} \equiv x'_1.$$

The abelian group $\{S, T\}$ of order n^2 is invariant under a group \dagger C_n of order

$$n^{5}\left(1-\frac{1}{p_{1}^{2}}\right)\left(1-\frac{1}{p_{2}^{2}}\right)\cdot\cdot\cdot\left(1-\frac{1}{p_{m}^{2}}\right),$$

where p_1, p_2, \dots, p_m are the distinct prime factors of n. The order of C_6 is 5184.

Winger‡ has discussed briefly the monomial group of order $(r+1)!n^r$ that leaves invariant the variety

$$x_0^n + x_1^n + x_2^n + \cdots + x_n^n = 0.$$

This group is generated by the symmetric group of degree r+1 and an abelian group of order n^r in canonical form. For r=3 and n=6 there results a group G of order 5184 which has been treated by Musselman.§ The purpose of this note is to prove that G and C_6 are not simply isomorphic. The proof consists in showing that the number of collineations of period 2 in G exceeds the number of collineations of period 2 in G.

^{*} Presented to the Society, June 18, 1936.

[†] In fact, C_n is the largest collineation group in n variables containing $\{S, T\}$ invariantly, the coefficients and variables being in the field of complex numbers. (Author's dissertation, Ohio State University, 1934.)

[†] Trinomial curves and monomial groups, American Journal of Mathematics, vol. 52 (1930), p. 394.

[§] On an imprimitive group of order 5184, American Journal of Mathematics, vol. 49 (1927).

Proof of the Non-Isomorphism of G and C_6 **.** The group C_6 is generated by $\{S, T\}$ and the two collineations

$$V: \quad \rho x_r = \sum_{c=1}^{6} \epsilon^{(r-1)(c-1)} x_c', \quad (r = 1, \dots, 6),$$

$$W: \quad \rho x_r = \epsilon^{-(r-1)^2/2} x_r', \quad (r = 1, \dots, 6),$$

satisfying the following relations:

$$V^4 = W^{12} = 1$$
, $V^2W = WV^2$, $V^{-1}SV = T^{-1}$, $W^{-1}SW = S$, $(VW)^3 = V^2 = (WV)^3$, $W^6 = S^3$, $V^{-1}TV = S$, $W^{-1}TW = S^{-1}T$.

The order of $H = \{V, W\}$ is 576. This group may be constructed by the following chain of invariant subgroups and an independent proof that the order of C_6 is 5184 follows readily.

$$H = \{V, G_{288}\}, \quad G_{288} = \{W^5 V W^3 V^3, G_{96}\}, \quad G_{96} = \{W^2, G_{32}\},$$

$$G_{32} = \{W^2 (W^2 V)^2, G_{16}\}, \quad G_{16} = \{(W^2 V)^3 V, G_4\}, \quad G_4 = \{S^3, T^3\}.$$

Since G_4 is contained in $\{S, T\}$ which is invariant under H, the order of C_6 is $576 \cdot 36/4 = 5184$.

If Q, of order 144, represents the quotient group of C_6 with respect to $\{S, T\}$, each element of Q, being a co-set of C_6 , represents 36 collineations of C_6 that transform $\{S, T\}$ into itself according to the same isomorphism of $\{S, T\}$ with itself.* There are 24 collineations $S^{i}T^{k}$ of period 6 in $\{S, T\}$; if S is transformed into a particular $S^{j}T^{k}$, the collineation $S^{l}T^{m}$ into which T is to be transformed may be selected in six ways. Let K represent a class of 144 collineations of C_6 corresponding to the 144 distinct possible sets (j, k, l, m). That is, K contains one and only one collineation from each of the 144 augmented co-sets of C_6 . The square of $A \cdot S^r T^s$, an arbitrary collineation of the class K from the co-set to which A belongs, may be expressed in the form $A^2S^uT^v$ and hence is of period 2 only if A^2 is in $\{S, T\}$. That is, a necessary condition that $A \cdot S^rT^s$ be of period 2 is that A^2 be commutative with both S and T. Among any class K there are only 8 collineations B such that the corresponding sets of values (j, k, l, m) satisfy the congruences arising from the conditions that B^2 transform S into S and T into T.

^{*} It may easily be proved that the 36 collineations of $\{S, T\}$ are the only collineations in six variables commutative with both S and T.

The following table shows 8 such collineations, their squares, and the collineations of $\{S, T\}$ which multiply these 8 collineations on the right to form collineations of C_6 of period 2. The numbers in the last column show the total number of collineations of C_6 of period 2 corresponding to each B of K. Thus it is seen that C_6 contains just 99 collineations of period 2.

It is easily shown that G contains more than 99 collineations of period 2 and hence G and C_6 are not simply isomorphic.

M_3	$W^6 = S^3$	T^3, S^3T^3	2
S^3	$S^6 = 1$	1, T^3 , S^3T^3	3
$U^3 = V^{-1}W^3V$	$U^6 = T^3$	S^3, S^3T^3	2
$ \begin{vmatrix} \frac{1}{2} \\ \frac$		$S^{j}T^{k}$ where (j, k) sat-	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$X^2=1$	isfies the congruence	10
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	X2=1	$3(j+k) \equiv 0 \pmod{6}$	18
$V^2 = R$	$V^4 = 1$	$S^{j}T^{k}$, $(j, k = 1, \dots, 6)$	36
RX = XR	$(RX)^2 = 1$	$1, S^3T^3$	2
$RW^3 = W^3R$	$(RW^3)^2 = W^6$		18
$RU^3 = U^3R$	$(RU^3)^2 = T^3$	$(k = 1, 3, 5) (j = 1, 3, 5) S^{j}T^{k} (k = 1, \dots, 6)$	18
			99

University of Alabama