H. S. WALL

ON CONTINUED FRACTIONS REPRESENTING CONSTANTS*

H. S. WALL

1. Introduction. Let $\xi: x^{(1)}, x^{(2)}, x^{(3)}, \cdots$ be an infinite sequence of points $x = (x_1, x_2, x_3, \cdots, x_m)$ in a space S, and let $\phi_1(x), \phi_2(x), \phi_3(x), \cdots, \phi_k(x)$ be single-valued real or complex functions over S. Then the functionally periodic continued fraction

$$1 + \frac{\phi_1(x^{(1)})}{1} + \frac{\phi_2(x^{(1)})}{1} + \cdots + \frac{\phi_k(x^{(1)})}{1} + \frac{\phi_1(x^{(2)})}{1} + \cdots + \frac{\phi_k(x^{(1)})}{1} + \frac{\phi_1(x^{(2)})}{1} + \cdots$$

is a function $f(\xi)$ of the sequence ξ . By a neighborhood of a sequence $\xi: x^{(1)}, x^{(2)}, x^{(3)}, \cdots$, we shall understand a set N_{ξ} of sequences subject to the following conditions: (i) ξ is in N_{ξ} ; (ii) if $\eta: y^{(1)}, y^{(2)}, y^{(3)}, \cdots$ is in N_{ξ} , then $\eta_{\nu}: y^{(\nu+1)}, y^{(\nu+2)}, y^{(\nu+3)}, \cdots$ and $\zeta_{\nu}: y^{(1)}, y^{(2)}, y^{(3)}, \cdots, y^{(\nu)}, x^{(\nu+1)}, x^{(\nu+2)}, x^{(\nu+3)}, \cdots$ are in N_{ξ} for $\nu = 1, 2, 3, \cdots$.

Let $A_n(\xi)$ and $B_n(\xi)$ be the numerator and denominator, respectively, of the *n*th convergent of $f(\xi)$ as computed by means of the usual recursion formulas. Put

$$L(\xi,t) = B_{k-1}(\xi)t^{2} + \left[\phi_{k}(x^{(1)})B_{k-2}(\xi) - A_{k-1}(\xi)\right]t - \phi_{k}(x^{(1)})A_{k-2}(\xi).$$

Then our principal theorem is as follows:

THEOREM 1. Let there be a sequence $c: c^{(1)}, c^{(2)}, c^{(3)}, \cdots$, and a neighborhood N_c of c, and a number r having the following properties:

- (a) $f(\xi)$ converges uniformly over N_c ,
- (b) f(c) = r,
- (c) $L(\xi, r) = 0$ for every sequence ξ in N_c ,

(d) $\phi_i(x^{(\nu)}) \neq 0$, $(\nu = 1, 2, 3, \cdots; i = 1, 2, 3, \cdots, k)$, for every sequence $\xi: x^{(1)}, x^{(2)}, x^{(3)}, \cdots in N_c$.

When these conditions are fulfilled, $f(\xi) = r$ throughout N_c .

The proof of Theorem 1 is contained in §2; §3 contains a specialization and §4 an application of this theorem. In §5 continued fractions

^{*} Presented to the Society, April 9, 1937.

representing constants are obtained by means of certain transformations.*

2. **Proof of Theorem 1.** Let $\eta: y^{(1)}, y^{(2)}, y^{(3)}, \cdots$ be any sequence in N_c . Then $\eta_{\nu}: y^{(\nu+1)}, y^{(\nu+2)}, y^{(\nu+3)}, \cdots$ is in N_c , and $f(\eta_{\nu}), (\nu = 0, 1, 2, \cdots; \eta_0 = \eta)$, converges by (a); and

(1)
$$f(\eta_{\nu}) = \frac{A_{k-1}(\eta_{\nu})f(\eta_{\nu+1}) + A_{k-2}(\eta_{\nu})\phi_{k}(y^{(\nu+1)})}{B_{k-1}(\eta_{\nu})f(\eta_{\nu+1}) + B_{k-2}(\eta_{\nu})\phi_{k}(y^{(\nu+1)})},$$
$$f(\eta_{\nu+1}) = -\frac{B_{k-2}(\eta_{\nu})f(\eta_{\nu}) - A_{k-2}(\eta_{\nu})}{B_{k-1}(\eta_{\nu})f(\eta_{\nu}) - A_{k-1}(\eta_{\nu})}\phi_{k}(y^{(\nu+1)}).$$

The determinant of the matrix

$$\begin{pmatrix} A_{k-1}(\eta_{\nu}), & A_{k-2}(\eta_{\nu})\phi_{k}(y^{(\nu+1)}) \\ B_{k-1}(\eta_{\nu}), & B_{k-2}(\eta_{\nu})\phi_{k}(y^{(\nu+1)}) \end{pmatrix}$$

is $\pm \phi_1(y^{(\nu+1)})\phi_2(y^{(\nu+1)})\cdots \phi_k(y^{(\nu+1)})$ and is therefore $\neq 0$ by (d). Hence the denominators in (1) cannot vanish, for otherwise the numerators would also vanish, which is impossible. It then follows from (c) that if $f(\eta_{\nu}) = r$ for one value of ν , then $f(\eta_{\nu}) = r$ for all values of $\nu(=0, 1, 2, 3, \cdots)$. In particular, if ζ_{ν} is the sequence $y^{(1)}, y^{(2)}, y^{(3)}, \cdots, y^{(\nu)}, c^{(\nu+1)}, c^{(\nu+2)}, c^{(\nu+3)}, \cdots$, then $f(\zeta_{\nu}) = r$, $(\nu = 1, 2, 3, \cdots)$.

Now by (a), for every $\epsilon > 0$ there exists a K such that if n > K, $p = 1, 2, 3, \cdots$,

(2)
$$\left|\frac{A_{n+p}(\zeta_{\nu})}{B_{n+p}(\zeta_{\nu})} - \frac{A_{n}(\zeta_{\nu})}{B_{n}(\zeta_{\nu})}\right| < \epsilon$$

for $\nu = 1, 2, 3, \cdots$. Choose a fixed n > K, and then choose ν so large that $A_n(\zeta_{\nu})/B_n(\zeta_{\nu}) = A_n(\eta)/B_n(\eta)$. Then on allowing p to increase to ∞ in (2) we find that

$$\left| f(\zeta_{\nu}) - \frac{A_n(\eta)}{B_n(\eta)} \right| \leq \epsilon$$
 or $\left| r - \frac{A_n(\eta)}{B_n(\eta)} \right| \leq \epsilon$

if n > K. That is, $f(\eta) = r$. Since η was any sequence in N_c our theorem is proved.

1938]

^{*} Leighton and Wall, On the transformation and convergence of continued fractions, American Journal of Mathematics, vol. 58 (1936), pp. 267–281; Wall, Continued fractions and cross-ratio groups of Cremona transformations, this Bulletin, vol. 40 (1934), pp. 587–592.

3. Specialization of Theorem 1. Let the sequence c be such that f(c) is a periodic continued fraction of period k. Let r, s be the roots of the quadratic equation L(c, t) = 0. Then* in order for f(c) to converge to the value r the following two conditions are both necessary and sufficient, namely:

 $(\alpha) \ B_{k-1}(c) \neq 0,$

(β) r = s or else

 $|B_{k-1}(c)r + \phi_k(c^{(1)})B_{k-2}(c)| > |B_{k-1}(c)s + \phi_k(c^{(1)})B_{k-2}(c)| \text{ and } A_{\lambda}(c) - sB_{\lambda}(c) \neq 0, \ (\lambda = 0, 1, 2, \cdots, k-2).$

An important and simple sufficient condition[†] for the uniform convergence of $f(\xi)$ over N_c is that

(γ) $|\phi_i(x^{(\nu)})| \leq \frac{1}{4}$, $(i=1, 2, 3, \cdots, k; \nu=1, 2, 3, \cdots)$, for every sequence $\xi: x^{(1)}, x^{(2)}, x^{(3)}, \cdots$ in N_c .

From these remarks and Theorem 1 we then have this result:

THEOREM 2. Let there be a sequence c and a neighborhood N_c of c such that (γ) and conditions (c), (d) of Theorem 1 hold. Then if f(c) is a periodic continued fraction of period k, we have $f(\xi) = r$ throughout N_c .

4. Application in the case where $\phi_1, \phi_2, \phi_3, \cdots, \phi_k$ are polynomials. If k=1, then $L(\xi, t) = t^2 - t - \phi_1(x^{(1)})$, so that in order for (c) of Theorem 1 to hold ϕ_1 must be a constant, and $f(\xi)$ reduces to an ordinary periodic continued fraction.

Let k=2. Then $L(\xi, t) = t^2 + [\phi_2(x^{(1)}) - \phi_1(x^{(1)}) - 1]t - \phi_2(x^{(1)})$. We shall suppose that $\phi_{\nu}(x) = \phi_{\nu}(x_1, x_2, x_3, \dots, x_m)$, $(\nu = 1, 2)$, are polynomials in the real or complex variables $x_1, x_2, x_3, \dots, x_m$. Let a, b be the constant terms, and G, H the coefficients of $x_1^u x_2^v \cdots x_m^w$ in ϕ_1 and ϕ_2 , respectively. Then (c) of Theorem 1 is equivalent to the relations

$$(b-a)r-b=r(1-r), (H-G)r-H=0,$$
 all G, H.

If r=0, then $\phi_2 \equiv 0$, while if r=1, then $\phi_1 \equiv 0$. Suppose $r \neq 0, 1$. Then if either G or H is 0, the other is 0 also, and if G=H, their common value is 0. Hence (c) of Theorem 1 takes the form of the following identity:

(3)
$$r\phi_1 \equiv (r-1)(\phi_2 + r), \qquad r \neq 0, 1.$$

On referring to Theorem 2 we now have this result:

THEOREM 3. Let $\phi_1(x)$ and $\phi_2(x)$ be polynomials in the real or complex variables $x_1, x_2, x_3, \cdots, x_m$ connected by the identity (3) with con-

^{*} Perron, Die Lehre von den Kettenbrüchen, 1st edition, p. 276.

[†] Perron, loc. cit., p. 262.

stant terms a and b, respectively. Let r, in (3), and s be the roots of the quadratic equation $t^2+(b-a-1)t-b=0$ such that r=s or else |r+b| > |s+b|, $s \neq 1$. Let a, b be such that $|a| < \frac{1}{4}$, $|b| < \frac{1}{4}$, $a \neq 0$, $b \neq 0$. Then there exists a positive constant R such that throughout the circle $|x_i^{(\nu)}| \leq R$, $(i=1, 2, \cdots, m; \nu=1, 2, \cdots)$, we have

(4)
$$1 + \frac{\phi_1(x^{(1)})}{1} + \frac{\phi_2(x^{(1)})}{1} + \frac{\phi_1(x^{(2)})}{1} + \frac{\phi_2(x^{(2)})}{1} + \cdots \equiv r,$$
$$x^{(\nu)} = (x_1^{(\nu)}, x_2^{(\nu)}, \cdots, x_m^{(\nu)}).$$

In applying Theorem 2 we have taken $c^{(\nu)} = (0, 0, 0, \dots, 0)$ in the sequence c. It is to be observed that, when this is done and Theorem 2 applies, the value of the continued fraction depends upon only the constant terms of the polynomials $\phi_1, \phi_2, \phi_3, \dots, \phi_k$.

5. Singular continued fractions. Let T be a transformation which carries the continued fraction $f = x_0 + K(x_i/1)$ into another continued fraction $Tf = x_0' + K(x_i'/1)$ in such a way that when either f or Tf converges the other does also and their values are equal. We shall speak of such a transformation as a *proper* transformation of f. Suppose moreover that for some positive integer n the elements x_i of f are subject to the condition

(5)
$$x_i = x'_i, \qquad i = n, n+1, n+2, \cdots.$$

This gives the following formal relation:

$$x_0 + \frac{x_1}{1} + \cdots + \frac{x_{n-1}}{g_n} = x_0' + \frac{x_1'}{1} + \cdots + \frac{x_{n-1}'}{g_n},$$

from which one may compute the value of the continued fraction

$$g_n = 1 + \frac{x_n}{1} + \frac{x_{n+1}}{1} + \cdots$$

when the latter converges.

The procedure outlined above will now be carried out for the following proper transformation:*

$$\begin{aligned} x_0' &= x_0 + x_1, \quad x_1' &= -x_1, \quad x_2' &= (1+x_3)/x_2; \\ T_2: \quad x_{2n+1}' &= x_{2n+1}, \quad x_{2n+2}' &= (1+x_{2n+1})(1+x_{2n+3})/x_{2n+2}, \\ & n &= 1, 2, 3, \cdots; x_n \neq 0, -1 \text{ if } n > 0. \end{aligned}$$

In this case the relations (5) are satisfied if and only if

^{*} Leighton and Wall, loc. cit., p. 277.

(6)
$$x_{2i+2}^2 = (1 + x_{2i+1})(1 + x_{2i+3}), \quad i = n, n+1, n+2, \cdots,$$

where if n=0 the first of these relations is to be replaced by $x_2^2 = (1+x_3)$. When n=0 we have the relation

$$x_0 + x_1/g_2 = x_0 + x_1 - x_1/g_2$$

from which to compute g_2 . It follows that, if f converges, g_2 must converge and have the value 2; and if g_2 converges to a value different from 0, f must converge and $g_2 = 2$. Moreover, it is impossible for g_2 to have the value ∞ , for that would imply that $f = x_0$ while $Tf = x_0 + x_1 \neq f$. If we now write out the continued fraction g_2 and make a change in notation, the following theorem results.

THEOREM 4. If x_1, x_2, x_3, \cdots are arbitrary complex numbers $\neq 0, -1$, then the continued fraction

(7)
$$1 + \frac{e_1(1+x_1)^{1/2}}{1} + \frac{x_1}{1} + \frac{e_2[(1+x_1)(1+x_2)]^{1/2}}{1} + \frac{x_2}{1} + \frac{e_3[(1+x_2)(1+x_3)]^{1/2}}{1} + \cdots, \qquad e_i = \pm 1,$$

has one of the values 0 or 2 whenever it converges, and it cannot diverge to ∞ .

It is interesting to observe that if $e_i = +1$, (7) is the formal expansion of 2 into a continued fraction by means of the identity

$$1 = \frac{(1+t)^{1/2}}{1+\frac{t}{1+(1+t)^{1/2}}}$$

As a special case we have the expansion

$$(1+N)^{1/2} = 1 + \frac{N}{1} + \frac{N+1}{1} + \frac{N}{1} + \frac{N+1}{1} + \cdots,$$

which is valid if N is a positive integer.

The transformation T_2 is one of an infinite group of transformations discussed by the writer* elsewhere in this Bulletin. If one obtains the singular continued fractions corresponding to the case m=3 (in the notation of §3, p. 589, of that article), the following three theorems result.

98

^{*} Wall, loc. cit.

THEOREM 5. If the continued fraction

$$1 - \frac{x_1}{1} - \frac{(x_1^2 - x_1 + 1)}{1} - \frac{x_1}{1} - \frac{x_2}{1} - \frac{(x_2^2 - x_2 + 1)}{1}$$
$$- \frac{x_2}{1} - \frac{x_3}{1} - \cdots, \qquad \qquad x_n \neq 0, \ x_n^2 - x_n + 1 \neq 0,$$

converges, its value is $(1 \pm i3^{1/2})/2$.

THEOREM 6. If the continued fraction

$$1 - \frac{e_1}{1} - \frac{x_1}{1} - \frac{(2 - x_1)}{1} - \frac{e_2}{1} - \frac{x_2}{1} - \frac{(2 - x_2)}{1} - \frac{e_3}{1} - \cdots,$$

$$e_n = \pm 1, \ x_n \neq 0, \ 2,$$

converges, its value is 0 or 1.

THEOREM 7. If the continued fraction

$$1 - \frac{x_1}{1} - \frac{(1 - 2x_1)}{1} - \frac{x_1}{1} - \frac{x_2}{1} - \frac{(1 - 2x_2)}{1} - \frac{x_2}{1} - \frac{x_2}{1} - \cdots,$$

$$x_n \neq 0, \ \frac{1}{2},$$

converges, its value is 0 or $\frac{1}{2}$.

The proofs of these theorems are along the lines of the proof of Theorem 4, and will be omitted.

NORTHWESTERN UNIVERSITY

1938]