ON CONTINUED FRACTIONS REPRESENTING CONSTANTS*

H. S. WALL

1. Introduction. Let $\xi: x^{(1)}, x^{(2)}, x^{(3)}, \cdots$ be an infinite sequence of points $x=\left(x_{1}, x_{2}, x_{3}, \cdots, x_{m}\right)$ in a space S, and let $\phi_{1}(x), \phi_{2}(x)$, $\phi_{3}(x), \cdots, \phi_{k}(x)$ be single-valued real or complex functions over S. Then the functionally periodic continued fraction

$$
\begin{aligned}
& 1+\frac{\phi_{1}\left(x^{(1)}\right)}{1}+\frac{\phi_{2}\left(x^{(1)}\right)}{1}+\cdots+\frac{\phi_{k}\left(x^{(1)}\right)}{1}+\frac{\phi_{1}\left(x^{(2)}\right)}{1}+\cdots \\
& \quad+\frac{\phi_{k}\left(x^{(2)}\right)}{1}+\frac{\phi_{1}\left(x^{(3)}\right)}{1}+\cdots
\end{aligned}
$$

is a function $f(\xi)$ of the sequence ξ. By a neighborhood of a sequence $\xi: x^{(1)}, x^{(2)}, x^{(3)}, \cdots$, we shall understand a set N_{ξ} of sequences subject to the following conditions: (i) ξ is in N_{ξ}; (ii) if $\eta: y^{(1)}, y^{(2)}$, $y^{(3)}, \cdots$ is in N_{ξ}, then $\eta_{\nu}: y^{(\nu+1)}, y^{(\nu+2)}, y^{(\nu+3)}, \cdots$ and $\zeta_{\nu}: y^{(1)}, y^{(2)}$, $y^{(3)}, \cdots, y^{(\nu)}, x^{(\nu+1)}, x^{(\nu+2)}, x^{(\nu+3)}, \cdots$ are in N_{ξ} for $\nu=1,2,3, \cdots$.

Let $A_{n}(\xi)$ and $B_{n}(\xi)$ be the numerator and denominator, respectively, of the nth convergent of $f(\xi)$ as computed by means of the usual recursion formulas. Put

$$
L(\xi, t)=B_{k-1}(\xi) t^{2}+\left[\phi_{k}\left(x^{(1)}\right) B_{k-2}(\xi)-A_{k-1}(\xi)\right] t-\phi_{k}\left(x^{(1)}\right) A_{k-2}(\xi)
$$

Then our principal theorem is as follows:
Theorem 1. Let there be a sequence $c: c^{(1)}, c^{(2)}, c^{(3)}, \cdots$, and a neighborhood N_{c} of c, and a number r having the following properties:
(a) $f(\xi)$ converges uniformly over N_{c},
(b) $f(c)=r$,
(c) $L(\xi, r)=0$ for every sequence ξ in N_{c},
(d) $\phi_{i}\left(x^{(\nu)}\right) \neq 0,(\nu=1,2,3, \cdots ; i=1,2,3, \cdots, k)$, for every sequence $\xi: x^{(1)}, x^{(2)}, x^{(3)}, \cdots$ in N_{c}.
When these conditions are fulfilled, $f(\xi)=r$ throughout N_{c}.
The proof of Theorem 1 is contained in $\S 2 ; \S 3$ contains a specialization and $\S 4$ an application of this theorem. In $\S 5$ continued fractions

[^0]representing constants are obtained by means of certain transformations.*
2. Proof of Theorem 1. Let $\eta: y^{(1)}, y^{(2)}, y^{(3)}, \cdots$ be any sequence in N_{c}. Then $\eta_{\nu}: y^{(\nu+1)}, y^{(\nu+2)}, y^{(\nu+3)}, \cdots$ is in N_{c}, and $f\left(\eta_{\nu}\right),(\nu=0,1$, $2, \cdots ; \eta_{0}=\eta$), converges by (a); and
\[

$$
\begin{align*}
f\left(\eta_{\nu}\right) & =\frac{A_{k-1}\left(\eta_{\nu}\right) f\left(\eta_{\nu+1}\right)+A_{k-2}\left(\eta_{\nu}\right) \phi_{k}\left(y^{(\nu+1)}\right)}{B_{k-1}\left(\eta_{\nu}\right) f\left(\eta_{\nu+1}\right)+B_{k-2}\left(\eta_{\nu}\right) \phi_{k}\left(y^{(\nu+1)}\right)} \\
f\left(\eta_{\nu+1}\right) & =-\frac{B_{k-2}\left(\eta_{\nu}\right) f\left(\eta_{\nu}\right)-A_{k-2}\left(\eta_{\nu}\right)}{B_{k-1}\left(\eta_{\nu}\right) f\left(\eta_{\nu}\right)-A_{k-1}\left(\eta_{\nu}\right)} \phi_{k}\left(y^{(\nu+1)}\right) . \tag{1}
\end{align*}
$$
\]

The determinant of the matrix

$$
\left(\begin{array}{ll}
A_{k-1}\left(\eta_{\nu}\right), & A_{k-2}\left(\eta_{\nu}\right) \phi_{k}\left(y^{(\nu+1)}\right) \\
B_{k-1}\left(\eta_{\nu}\right), & B_{k-2}\left(\eta_{\nu}\right) \phi_{k}\left(y^{(\nu+1)}\right)
\end{array}\right)
$$

is $\pm \phi_{1}\left(y^{(\nu+1)}\right) \phi_{2}\left(y^{(\nu+1)}\right) \cdots \phi_{k}\left(y^{(\nu+1)}\right)$ and is therefore $\neq 0$ by (d). Hence the denominators in (1) cannot vanish, for otherwise the numerators would also vanish, which is impossible. It then follows from (c) that if $f\left(\eta_{\nu}\right)=r$ for one value of ν, then $f\left(\eta_{\nu}\right)=r$ for all values of $\nu(=0,1,2,3, \cdots)$. In particular, if ζ_{ν} is the sequence $y^{(1)}, y^{(2)}$, $y^{(3)}, \cdots, y^{(\nu)}, c^{(\nu+1)}, c^{(\nu+2)}, c^{(\nu+3)}, \cdots$, then $f\left(\zeta_{\nu}\right)=r, \quad(\nu=1,2$, 3, •).

Now by (a), for every $\epsilon>0$ there exists a K such that if $n>K$, $p=1,2,3, \cdots$,

$$
\begin{equation*}
\left|\frac{A_{n+p}\left(\zeta_{\nu}\right)}{B_{n+p}\left(\zeta_{\nu}\right)}-\frac{A_{n}\left(\zeta_{\nu}\right)}{B_{n}\left(\zeta_{\nu}\right)}\right|<\epsilon \tag{2}
\end{equation*}
$$

for $\nu=1,2,3, \cdots$. Choose a fixed $n>K$, and then choose ν so.large that $A_{n}\left(\zeta_{\nu}\right) / B_{n}\left(\zeta_{\nu}\right)=A_{n}(\eta) / B_{n}(\eta)$. Then on allowing p to increase to ∞ in (2) we find that

$$
\left|f\left(\zeta_{\nu}\right)-\frac{A_{n}(\eta)}{B_{n}(\eta)}\right| \leqq \epsilon \quad \text { or } \quad\left|r-\frac{A_{n}(\eta)}{B_{n}(\eta)}\right| \leqq \epsilon
$$

if $n>K$. That is, $f(\eta)=r$. Since η was any sequence in N_{c} our theorem is proved.

[^1]3. Specialization of Theorem 1. Let the sequence c be such that $f(c)$ is a periodic continued fraction of period k. Let r, s be the roots of the quadratic equation $L(c, t)=0$. Then* in order for $f(c)$ to converge to the value r the following two conditions are both necessary and sufficient, namely:
(α) $B_{k-1}(c) \neq 0$,
(β) $r=s$ or else
$\left|B_{k-1}(c) r+\phi_{k}\left(c^{(1)}\right) B_{k-2}(c)\right|>\left|B_{k-1}(c) s+\phi_{k}\left(c^{(1)}\right) B_{k-2}(c)\right|$ and $A_{\lambda}(c)-s B_{\lambda}(c) \neq 0,(\lambda=0,1,2, \cdots, k-2)$.

An important and simple sufficient condition \dagger for the uniform convergence of $f(\xi)$ over N_{c} is that
$(\gamma)\left|\phi_{i}\left(x^{(\nu)}\right)\right| \leqq \frac{1}{4},(i=1,2,3, \cdots, k ; \nu=1,2,3, \cdots)$, for every sequence $\xi: x^{(1)}, x^{(2)}, x^{(3)}, \cdots$ in N_{c}.

From these remarks and Theorem 1 we then have this result:
Theorem 2. Let there be a sequence c and a neighborhood N_{c} of c such that (γ) and conditions (c), (d) of Theorem 1 hold. Then if $f(c)$ is a periodic continued fraction of period k, we have $f(\xi)=r$ throughout N_{c}.
4. Application in the case where $\phi_{1}, \phi_{2}, \phi_{3}, \cdots, \phi_{k}$ are polynomials. If $k=1$, then $L(\xi, t)=t^{2}-t-\phi_{1}\left(x^{(1)}\right)$, so that in order for (c) of Theorem 1 to hold ϕ_{1} must be a constant, and $f(\xi)$ reduces to an ordinary periodic continued fraction.

Let $k=2$. Then $L(\xi, t)=t^{2}+\left[\phi_{2}\left(x^{(1)}\right)-\phi_{1}\left(x^{(1)}\right)-1\right] t-\phi_{2}\left(x^{(1)}\right)$. We shall suppose that $\phi_{\nu}(x)=\phi_{\nu}\left(x_{1}, x_{2}, x_{3}, \cdots, x_{m}\right),(\nu=1,2)$, are polynomials in the real or complex variables $x_{1}, x_{2}, x_{3}, \cdots, x_{m}$. Let a, b be the constant terms, and G, H the coefficients of $x_{1}{ }^{u} x_{2}{ }^{v} \cdots x_{m}^{w}$ in ϕ_{1} and ϕ_{2}, respectively. Then (c) of Theorem 1 is equivalent to the relations

$$
(b-a) r-b=r(1-r), \quad(H-G) r-H=0, \quad \text { all } G, H
$$

If $r=0$, then $\phi_{2} \equiv 0$, while if $r=1$, then $\phi_{1} \equiv 0$. Suppose $r \neq 0,1$. Then if either G or H is 0 , the other is 0 also, and if $G=H$, their common value is 0 . Hence (c) of Theorem 1 takes the form of the following identity:

$$
\begin{equation*}
r \phi_{1} \equiv(r-1)\left(\phi_{2}+r\right), \quad r \neq 0,1 \tag{3}
\end{equation*}
$$

On referring to Theorem 2 we now have this result:
Theorem 3. Let $\phi_{1}(x)$ and $\phi_{2}(x)$ be polynomials in the real or complex variables $x_{1}, x_{2}, x_{3}, \cdots, x_{m}$ connected by the identity (3) with con-

[^2]stant terms a and b, respectively. Let r, in (3), and s be the roots of the quadratic equation $t^{2}+(b-a-1) t-b=0$ such that $r=s$ or else $|r+b|$ $>|s+b|, s \neq 1$. Let a, b be such that $|a|<\frac{1}{4},|b|<\frac{1}{4}, a \neq 0, b \neq 0$. Then there exists a positive constant R such that throughout the circle $\left|x_{i}{ }^{(\nu)}\right| \leqq R,(i=1,2, \cdots, m ; \nu=1,2, \cdots)$, we have
(4) $1+\frac{\phi_{1}\left(x^{(1)}\right)}{1}+\frac{\phi_{2}\left(x^{(1)}\right)}{1}+\frac{\phi_{1}\left(x^{(2)}\right)}{1}+\frac{\phi_{2}\left(x^{(2)}\right)}{1}+\cdots \equiv r$,
$$
x^{(\nu)}=\left(x_{1}^{(\nu)}, x_{2}^{(\nu)}, \cdots, x_{m}^{(\nu)}\right)
$$

In applying Theorem 2 we have taken $c^{(\nu)}=(0,0,0, \cdots, 0)$ in the sequence c. It is to be observed that, when this is done and Theorem 2 applies, the value of the continued fraction depends upon only the constant terms of the polynomials $\phi_{1}, \phi_{2}, \phi_{3}, \cdots, \phi_{k}$.
5. Singular continued fractions. Let T be a transformation which carries the continued fraction $f=x_{0}+K\left(x_{i} / 1\right)$ into another continued fraction $T f=x_{0}{ }^{\prime}+K\left(x_{i}{ }^{\prime} / 1\right)$ in such a way that when either f or $T f$ converges the other does also and their values are equal. We shall speak of such a transformation as a proper transformation of f. Suppose moreover that for some positive integer n the elements x_{i} of f are subject to the condition

$$
\begin{equation*}
x_{i}=x_{i}^{\prime}, \quad i=n, n+1, n+2, \cdots \tag{5}
\end{equation*}
$$

This gives the following formal relation:

$$
x_{0}+\frac{x_{1}}{1}+\cdots+\frac{x_{n-1}}{g_{n}}=x_{0}^{\prime}+\frac{x_{1}^{\prime}}{1}+\cdots+\frac{x_{n-1}^{\prime}}{g_{n}}
$$

from which one may compute the value of the continued fraction

$$
g_{n}=1+\frac{x_{n}}{1}+\frac{x_{n+1}}{1}+\cdots
$$

when the latter converges.
The procedure outlined above will now be carried out for the following proper transformation:*

$$
\begin{aligned}
& x_{0}^{\prime}=x_{0}+x_{1}, \quad x_{1}^{\prime}=-x_{1}, \quad x_{2}^{\prime}=\left(1+x_{3}\right) / x_{2} ; \\
& T_{2}: \quad x_{2 n+1}^{\prime}=x_{2 n+1}, \quad x_{2 n+2}^{\prime}=\left(1+x_{2 n+1}\right)\left(1+x_{2 n+3}\right) / x_{2 n+2}, \\
& n=1,2,3, \cdots ; x_{n} \neq 0,-1 \text { if } n>0 .
\end{aligned}
$$

In this case the relations (5) are satisfied if and only if

[^3]\[

$$
\begin{equation*}
x_{2 i+2}^{2}=\left(1+x_{2 i+1}\right)\left(1+x_{2 i+3}\right), \quad i=n, n+1, n+2, \cdots \tag{6}
\end{equation*}
$$

\]

where if $n=0$ the first of these relations is to be replaced by $x_{2}^{2}=\left(1+x_{3}\right)$. When $n=0$ we have the relation

$$
x_{0}+x_{1} / g_{2}=x_{0}+x_{1}-x_{1} / g_{2}
$$

from which to compute g_{2}. It follows that, if f converges, g_{2} must converge and have the value 2 ; and if g_{2} converges to a value different from $0, f$ must converge and $g_{2}=2$. Moreover, it is impossible for g_{2} to have the value ∞, for that would imply that $f=x_{0}$ while $T f=x_{0}+x_{1} \neq f$. If we now write out the continued fraction g_{2} and make a change in notation, the following theorem results.

Theorem 4. If $x_{1}, x_{2}, x_{3}, \cdots$ are arbitrary complex numbers $\neq 0,-1$, then the continued fraction

$$
\begin{gather*}
1+\frac{e_{1}\left(1+x_{1}\right)^{1 / 2}}{1}+\frac{x_{1}}{1}+\frac{e_{2}\left[\left(1+x_{1}\right)\left(1+x_{2}\right)\right]^{1 / 2}}{1}+\frac{x_{2}}{1} \\
+\frac{e_{3}\left[\left(1+x_{2}\right)\left(1+x_{3}\right)\right]^{1 / 2}}{1}+\ldots, \tag{7}
\end{gather*} \quad e_{i}= \pm 1,
$$

has one of the values 0 or 2 whenever it converges, and it cannot diverge to ∞.

It is interesting to observe that if $e_{i}=+1$, (7) is the formal expansion of 2 into a continued fraction by means of the identity

$$
1=\frac{(1+t)^{1 / 2}}{1+\frac{t}{1+(1+t)^{1 / 2}}}
$$

As a special case we have the expansion

$$
(1+N)^{1 / 2}=1+\frac{N}{1}+\frac{N+1}{1}+\frac{N}{1}+\frac{N+1}{1}+\cdots
$$

which is valid if N is a positive integer.
The transformation T_{2} is one of an infinite group of transformations discussed by the writer* elsewhere in this Bulletin. If one obtains the singular continued fractions corresponding to the case $m=3$ (in the notation of $\S 3$, p. 589 , of that article), the following three theorems result.

[^4]Theorem 5. If the continued fraction

$$
\begin{aligned}
& 1-\frac{x_{1}}{1}-\frac{\left(x_{1}{ }^{2}-x_{1}+1\right)}{1}-\frac{x_{1}}{1}-\frac{x_{2}}{1}-\frac{\left(x_{2}{ }^{2}-x_{2}+1\right)}{1} \\
& -\frac{x_{2}}{1}-\frac{x_{3}}{1}-\ldots,
\end{aligned} \quad x_{n} \neq 0, x_{n}{ }^{2}-x_{n}+1 \neq 0, ~ l
$$

converges, its value is $\left(1 \pm i 3^{1 / 2}\right) / 2$.
Theorem 6. If the continued fraction

$$
\begin{array}{r}
1-\frac{e_{1}}{1}-\frac{x_{1}}{1}-\frac{\left(2-x_{1}\right)}{1}-\frac{e_{2}}{1}-\frac{x_{2}}{1}-\frac{\left(2-x_{2}\right)}{1}-\frac{e_{3}}{1}-\ldots \\
e_{n}= \pm 1, x_{n} \neq 0,2
\end{array}
$$

converges, its value is 0 or 1 .
Theorem 7. If the continued fraction

$$
1-\frac{x_{1}}{1}-\frac{\left(1-2 x_{1}\right)}{1}-\frac{x_{1}}{1}-\frac{x_{2}}{1}-\frac{\left(1-2 x_{2}\right)}{1}-\frac{x_{2}}{1}-\ldots
$$

$$
x_{n} \neq 0, \frac{1}{2},
$$

converges, its value is 0 or $\frac{1}{2}$.
The proofs of these theorems are along the lines of the proof of Theorem 4, and will be omitted.

Northwestern University

[^0]: * Presented to the Society, April 9, 1937.

[^1]: * Leighton and Wall, On the transformation and convergence of continued fractions, American Journal of Mathematics, vol. 58 (1936), pp. 267-281; Wall, Continued fractions and cross-ratio groups of Cremona transformations, this Bulletin, vol. 40 (1934), pp. 587-592.

[^2]: * Perron, Die Lehre von den Kettenbrilchen, 1st edition, p. 276.
 \dagger Perron, loc. cit., p. 262.

[^3]: * Leighton and Wall, loc. cit., p. 277.

[^4]: * Wall, loc. cit.

