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ON CONTINUED FRACTIONS REPRESENTING 
CONSTANTS* 

H. S. WALL 

1. Introduction. Let £: OC ̂  « OC ̂  ̂  • OC (3), • • • be an infinite sequence of 
points x=(xi, x2, #3, • • • , xm) in a space 5, and let 0i(x), 02(#), 
<M#), • • • , <t>k(x) be single-valued real or complex functions over 5 . 
Then the functionally periodic continued fraction 

ó i O ^ <ft2(*
(1)) ^ ( ^ ( 1 ) ) </>i(*(2)) 

1 + 1 + • • • + 1 + 1 + . . . 

4>*(*(2)) 4>i(*(3)) 

+ 1 + 1 +• • • 

is a function ƒ(£) of the sequence £. By a neighborhood of a sequence 
J: #(1), #(2), x(3), • • • , we shall understand a set iV$ of sequences 
subject to the following conditions: (i) £ is in Nç; (ii) if rj: yil\ j ( 2 ) , 
yW, • • • is in i\^, then rjv: y("+l\ y<v+2\ yW>, • • • and f,: / l \ y ^ , 
3,(3)) . . . ^ y ^ X ( , + D ) ^(F+2)^ ^(H-8)f . . . a r e } n jv^for J> = 1 , 2, 3, • • • . 

Let An(£) and Bn(Ç) be the numerator and denominator, respec
tively, of the ?zth convergent of ƒ(£) as computed by means of the 
usual recursion formulas. Put 

£($,*) - 5*-i(Ö*2 + [<t>k(x(1))Bk-2(0 - Ak^(0]t - 4>*(*(1)M*-2(Ö. 

Then our principal theorem is as follows : 

THEOREM 1. Let there be a sequence c: ca\ c(2), c(3), • • • , and a 
neighborhood Nc of c, and a number r having the following properties : 

(a) ƒ(£) converges uniformly over N09 

(b)f(c)=r, 
(c) L(£, r) =0for every sequence £ in Nct 

(d) 0i(x ( v ))^O, (̂  = 1, 2, 3, • • • ; i = l , 2 , 3 , • • • , k), f'or every se
quence £: #(1), #(2), x (3), • • • in Nc. 
When these conditions are fulfilled, f (Ç) =r throughout Ne. 

The proof of Theorem 1 is contained in §2; §3 contains a specializa
tion and §4 an application of this theorem. In §5 continued fractions 

* Presented to the Society, April 9, 1937. 
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representing constants are obtained by means of certain transfor
mations.* 

2. Proof of Theorem 1. Let rj: y(l\ y(2\ ;y(3), • • • be any sequence 
in Nc. Then rjp: y("+l\ y<v+2\ ?<"+», • • • is in Net and ƒ(r?,), (p = 0, 1, 
2, • • • ; Vo = v)i converges by (a); and 

fin,) = 
(1) 

i4fr-i(i?,)/(i7H-i) + Ak-2(r)v)<l>k(y^) 

£*-i( i? ,)7W) + Bk.2(v,)cl>k(y(v+1)) 

Bk^{t)v)f{y)v) -Aj^ki,) 
f(riv+i) = - „ , w / x : — <l>k(yiP+1)). 

Bk-i(rjp)f(rjv) — Ak-i(r}v) 

The determinant of the matrix 

A4fc_i(77„), 

\Bk_i(rjv), 

Ak„2(riv)cl>k(y
iv+l)) 

Bk-ibiMyW) ) 

is ±0i(^( , ;+1))02(^( , '+1)) • • • Myiv+l)) and is therefore ^ 0 by (d). 
Hence the denominators in (1) cannot vanish, for otherwise the 
numerators would also vanish, which is impossible. I t then follows 
from (c) that if/(r?„) =r for one value of p, then f(r]v) =r for all values 
of v( = 0, 1, 2, 3, • • • ). In particular, if f„ is the sequence ya\ y(2\ 

i / < « ) . , yM9 CW>, C<*+2>, Óv+Z\ , then ƒ«",)= r, (̂  = 1, 2, 
3, • • • ) . 

Now by (a), for every e > 0 there exists a K such that if n>K, 
£ = 1 ,2 ,3 , • • • , 

(2) < C 

for *> = 1, 2, 3, • • • . Choose a fixed n>K, and then choose v so,large 
that An(Cv)/Bn(Cv) =An(rj)/Bn(rj). Then on allowing p to increase to 
oo in (2) we find that 

/(TO -
Bn(rj) 

or r — 
An(yj) 

Bn(v) 

iin>K. That is, ƒ(77) = r. Since 77 was any sequence in iVc our theorem 
is proved. 

* Leighton and Wall, On the transformation and convergence of continued fractions, 
American Journal of Mathematics, vol. 58 (1936), pp. 267-281; Wall, Continued 
fractions and cross-ratio groups of Cremona transformations, this Bulletin, vol. 40 
(1934), pp. 587-592. 
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3. Specialization of Theorem 1. Let the sequence c be such that 
f(c) is a periodic continued fraction of period k. Let r, s be the roots 
of the quadratic equation L(c, t) = 0. Then* in order for f(c) to con
verge to the value r the following two conditions are both necessary 
and sufficient, namely: 

(a) Bk-i(c)9*0, 
(jö) r = s or else 

\Bk-i(c)r+<t>k(c
(l))Bk-2(c)\ >\Bk-1(c)s+Mc(1))Bk-2(c)\ and 

Ai(c)-sBi(c)?*0, (X = 0, 1,2, • • • ,k-2). 
An important and simple sufficient condition f for the uniform 

convergence of ƒ(£) over Nc is that 
(7) |* . - (* w ) | ^ i , (* = 1, 2, 3, • • • , *; *> = 1, 2, 3, • • • ), for every 

sequence £: xa). #(2), x(3), • • • in Ne. 
From these remarks and Theorem 1 we then have this result : 

THEOREM 2. Let there be a sequence c and a neighborhood Nc of c 
such that (y) and conditions (c), (d) of Theorem 1 hold. Then iff(c) is a 
periodic continued fraction of period k, we have f (£) = r throughout Nc. 

4. Application in the case where 0i, 02,03, • • • ,<f>k are polynomials. 
If k = l, then L(£, * )= / 2 - / -0 i ( s< l >) , so that in order for (c) of 
Theorem 1 to hold 0i must be a constant, and ƒ(£) reduces to an 
ordinary periodic continued fraction. 

Let Jfe = 2. Then L(£, /) = / 2 + [02(x(1)) - 0 i ( * ( 1 ) ) - l ] * - & ( * ( 1 ) ) . We 
shall suppose that 0„(x) =0„(#i, xit xZl • • • , xm), (̂  = 1, 2), are poly
nomials in the real or complex variables Let a, b 
be the constant terms, and G, H the coefficients of #iwX2v • • • x£ in 
0i and 02, respectively. Then (c) of Theorem 1 is equivalent to the 
relations 

( & - a ) r - & = r ( l - r ) , (H-G)r-H=0, all G, H. 

If ^ = 0, then 02 = 0, while if f = l, then 0i = O. Suppose f^O, 1. Then 
if either G or Ü is 0, the other is 0 also, and if G=H, their common 
value is 0. Hence (c) of Theorem 1 takes the form of the following 
identity : 

(3) r0i = ( r - l )(0, + r) , r ^ 0 , 1. 

On referring to Theorem 2 we now have this result: 

THEOREM 3. Let 0i(#) and <t>z(x) be polynomials in the real or com
plex variables x\, #2, #3, • • • , xm connected by the identity (3) with con-

* Perron, Die Lehre von den Kettenbrûchen, 1st edition, p. 276. 
t Perron, loc. cit., p. 262. 
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stant terms a and bt respectively. Let r, in (3), and s be the roots of the 
quadratic equation t2 + (b — a — l)t — b = 0 such that r = s or else \r-\-b\ 
>\s+b\, sj*l. Let a, b be such that \a\ <£ , \b\ < J , a^O, b^O. 
Then there exists a positive constant R such that throughout the circle 
I**001 SR, (i = l, 2, • • • , m\ v = l, 2, • • • ), we have 

fa(x^) fa(x^) </>i(*(2)) faW2)) 
(4) 1 H = r, 

1 + 1 + 1 + 1 + • • • 

X — \X\ j %2 j ' ' ' y 3Cm ) * 

In applying Theorem 2 we have taken c(v) = (0, 0, 0, • • • , 0) in the 
sequence c. I t is to be observed that, when this is done and Theorem 2 
applies, the value of the continued fraction depends upon only the 
constant terms of the polynomials fa, fa, fay * • • , fa. 

5. Singular continued fractions. Let T be a transformation which 
carries the continued fraction ƒ = xo+K(xi/1) into another continued 
fraction Tf = Xo+K(x//l) in such a way that when either ƒ or Tf 
converges the other does also and their values are equal. We shall 
speak of such a transformation as a proper transformation of ƒ. Sup
pose moreover that for some positive integer n the elements Xi of ƒ 
are subject to the condition 

(5) Xi = xl, i=n, n+1, n+2, • • • . 

This gives the following formal relation : 

X\ #n— 1 # 1 %n— 1 

x0 H = %Q H > 
1 + ' ' ' + gn 1 + ' ' ' + gn 

from which one may compute the value of the continued fraction 

Xn #n-fl 

gn = 1 + T + - r + - - -
when the latter converges. 

The procedure outlined above will now be carried out for the fol
lowing proper transformation :* 

Xi = X0 + Xi, X{ = — Xi, Xi = (1 + Xz)/X2] 

TV X2n+1 = #2n+l, X2n+2 = (1 + #2n-fl)(l + #2n+3)/#2n+2, 

n = 1, 2, 3, • • • ; xn ^ 0, — 1 if n > 0. 

In this case the relations (5) are satisfied if and only if 

* Leighton and Wall, loc. cit., p. 277. 

file:///r-/-b/
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(6) X2i+2 = (1 + #2i+i)(l + #21+3), i = n, n + 1, n + 2, • • • , 

where if n = 0 the first of these relations is to be replaced by 
# 2 = (1 +#3). When w = 0 we have the relation 

#0 + Xi/g2 = #0 + %1 - %l/g2 

from which to compute g2. It follows that, if ƒ converges, g2 must 
converge and have the value 2 ; and if g2 converges to a value differ
ent from 0, ƒ must converge and #2 = 2. Moreover, it is impossible for 
g2 to have the value 00, for that would imply that f = x0 while 
Tf = xo+Xi 5*f. If we now write out the continued fraction g2 and 
make a change in notation, the following theorem results. 

THEOREM 4. If xi, x2, x3, • • • are arbitrary complex numbers 
5*0, — 1, then the continued fraction 

*i(l + *i)1/2 «1 e2[(l + «0(1 + *,)]*/« ^ 
+ 1 + 1 + 1 + 1 

ez[{\ + x2)(l + * 3 ) ] 1 / 2 (7) 

+ 1 + • 
et= ± 1, 

tos one of the values 0 or 2 whenever it converges, and it cannot diverge 
to 00. 

I t is interesting to observe that if e < = + l , (7) is the formal ex
pansion of 2 into a continued fraction by means of the identity 

j = (i + 01 / f 

1 + 
1 + (1 + /)1 / 2 

As a special case we have the expansion 

N N + 1 N N + 1 
(1 + i\01/2 = 1 + 

1 + 1 + 1 + 1 + 

which is valid if N is a positive integer. 
The transformation T2 is one of an infinite group of transforma

tions discussed by the writer* elsewhere in this Bulletin. If one 
obtains the singular continued fractions corresponding to the case 
m = 3 (in the notation of §3, p. 589, of that article), the following three 
theorems result. 

* Wall, loc. cit. 
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THEOREM 5. If the continued fraction 

%1 (Xx2 — Xi + 1) Xi X2 (x2
2 — X2 + 1) 

"~ T - ï - T - T - î 
X2 Xz 

' j Xfi 7^ U j Xn -~ Xfi "y" 1 ? ^ U , 

convergesf its value is (1 ±iSlf2)/2. 

THEOREM 6. If the continued fraction 

ei xi (2 — Xi) e2 #2 (2 — X2) e% 

1 - 1 - 1 - 1 - 1 - 1 - 1 - . . . 

e^n : = T 1 j Xfi 7^ U j L , 

converges j its value is 0 or 1. 

THEOREM 7. If the continued fraction 

Xi (1 — 2# i ) #1 X2 (1 -* 2^2) X2 
1 -

1 - 1 - 1 - 1 - 1 _ i - . . . 
Xn 7^ U , "g j 

converges, ite z>a/we w 0 or %. 

The proofs of these theorems are along the lines of the proof of 
Theorem 4, and will be omitted. 

NORTHWESTERN UNIVERSITY 


