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interest given by Wicksell.* It was obtained for the simplified system 
already mentioned, by Lange.f The remarks in this section are in 
fact a generalization or justification of this latter theory. 

The index relations are particularly interesting in discussing 
changes from one system to another consequent on the introduc
tion or change of interest rate X. Thus, with the index of primary 
factors given, that is, Qi given, the introduction of a small interest 
rate X induces no modification of Qz as far as differentials of the first 
order. In fact, 

àQs = 0 , 

and 

à2Q* = X - ^ - ô Q i . 

dQiz 

Equations such as these are important for economic theory. 
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NOTE ON ALMOST-UNIVERSAL FORMSJ 

P. R. HALMOS 

Ramanujan§ and Dickson|| proved that there are 54 universal 
forms ax2+by2+cz2+dt2 with positive integral coefficients a, &, c, d. 
It is the purpose of this note to investigate almost-universal forms, 
that is, to exhibit sets of positive integral coefficients a, b, c, d such 
that ax2+by2+cz2+dt2 represents every positive integer with exactly 
one exception. 

Ramanujan§ showed that a necessary and sufficient condition that 
a form ax2+by2+cz2+dt2 be universal is that it represent the first 
fifteen positive integers. Consequently the integer which an almost-
universal form fails to represent cannot be greater than 15. Using 
Ramanujan's method of bounding the coefficients we can exhibit, 
merely by requiring that a form fail to represent exactly one of the 

* Wicksell, Lectures on Political Economy, London, 1935 (translation), vol. 1, 
p. 156. 

f Lange, loc. cit. 
{ Presented to the Society, December 28, 1937. 
§ Proceedings of the Cambridge Philosophical Society, vol. 19 (1917), pp. 11-21; 

Collected Papers, Cambridge, 1927, pp. 169-178. 
|| This Bulletin, vol. 33 (1927), pp. 63-70. 
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first fifteen positive integers, a set of 135 forms which has to contain 
all almost-universal forms. The well known theories of special ternary 
quadratic forms,* or even empirical verification, will reduce this 
number to 88. (Empirical verification would sometimes be cumber
some; for example, the first integer, other than 10, that x2+2y2 

+5s 2 + 15/2 fails to represent is 250.) 
The following list exhibits the 88 possibilities for almost-universal 

forms (where (#, &, c, d) denotes the form ax2+by2+cz2+dt2): 
Forms that do not represent 1 : 
( l)-(3) (2, 2, 3 ,4) , (2, 3 ,4 , 5), ( 2 , 3 , 4 , 8 ) . 
Forms that do not represent 2 : 
(4)-(5) (1, 3, 3, 5), (1, 3, 5, 6). 
Forms that do not represent 3 : 
(6)-(7) (l,l,i,d),d = 5,6; 
(8) - ( l l ) (1, 1, 5, d), d = 5, 6, 10, 11; 
(12)-(15) (1, 1,6, d), d = 7, 8, 10, 11. 
Forms that do not represent 5 : 
(16)-(20) (1, 2, 6, d), d = 6, 10, 11, 12, 13; 
(21)-(25) (1, 2, 7, d), d = 8, 10, 11, 12, 13. 
Forms that do not represent 6 : 
(26)-(32) (1, 1, 3, d), d = 7, 8, 10, 11, 13, 14, 15. 
Forms that do not represent 7 : 
(33)-(37) (1, 1, 1, d), d = 9, 10, 12, 14, 15; 
(38)-(42) (1, 2, 2, d), d = 9, 10, 12, 14, 15. 
Forms that do not represent 10: 
(43)-(55) (1, 2, 3, d), <Z = 11, 12, 13, 15, 17, 19, 20, 21, 22, 23, 

24, 25, 26; 
(56)-(59) (1, 2, 5, d), d = 11, 12, 13, 14. 
Forms that do not represent 14 : 
(60H73) (1, 1, 2, d), d = l5, 17, 18, 19, 20, 21, 22, 23, 24, 25, 

27, 28, 29, 30; 
(74)-(87) (1, 2, 4, d), d = 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 

27, 28, 29, 30. 
Forms that do not represent 15: 
(88) (1, 2, 5, 5). 
One general method of proof serves to establish almost-universality 

for most of these forms. By way of illustrating this method, we prove 
the following typical theorem : 

* The properties of every ternary form needed in this note are either discussed 
by Dickson, loc. cit., or else they follow from Dickson's discussion by elementary 
means. 
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THEOREM 1. The form 2x2 + 2y2+3z2+4t2 represents every positive 
integer with the exception of unity. 

Since (1, 1, 2) represents all odd numbers* (where (a, b, c) de
notes the ternary quadratic form ax2+by2+cz2), (2, 2, 3, 4) repre
sents all numbers of the form 4k + 2 with z = 0. For k>0 we have 
4& + l = 4 ( £ - l ) + 2 + 3 , hence (2, 2, 3, 4) represents 4& + 1 with 2 = 1. 
Since (1, 1, 6, 2) is a universal form,f for every k^O we have 
2k = x2+y2+6z2 + 2t2, whence 4& = 2x2 + 2;y2 + 3(22)2+4*2. Finally, it 
may be proved, by consideration of elementary divisibility proper
ties, that two numbers not represented by (1, 1, 2) never differ 
by 12. Hence, for k>5 we have either 2k=x2+y2+2t2 or else 
2k —12 = x2+y2+2t2. According as the first or the second relation 
holds we have 4k + 3 = 2 x 2 + 2 y + 3 - 1 2 + 4 / 2 or else Ak + 3 = 2x2+2y2 

+3-3 2 +4/ 2 . Since it is readily verified that (2, 2, 3, 4) represents the 
numbers 4fc + 3, k = 0, 1, 2, 3, 4, 5, the proof of the theorem is com
plete. 

The above treatment is not applicable to the form (2) : (2, 3, 4, 5). 
We prove the following theorem : 

THEOREM 2. The form 2x2+3y2+4:Z2+5t2 represents every positive 
integer with the exception of unity. 

Let A, B, C be three numbers of the form 4a(16& + 10), where a 
and k are non-negative integers. Concerning these we have the follow
ing lemma: 

LEMMA. / / is impossible that the two equations A-— B=40fA — C = 120 
hold simultaneously; also, the equation A—B = 20 is impossible. 

The proof of the lemma is elementary and is.omitted. 
Empirical verification yields the result that the form (2, 3, 4, 5) 

represents all integers n where 2 ^ ^ ^ 2 0 0 . 
Consider now the ternary form (1, 2, 6). It represents every posi

tive integer not of the form 4a(Sk + 5). But if n = x2+6y2 + 2z2, then 
2?z = 2x2+3(2;y)2+4;s2, whence the form 2x2+3:y2+432 + 5/2 repre
sents all even numbers not of the form 4a(16& + 10), with t = 0. 
But if A is such a number, then, by the lemma, A —20 is not; whence 
^ - 2 0 = 2x2 + 3y+42 2 , andA=2x2 + 3y2+4z2 + 5-22. Hence the form 
(2, 3, 4, 5) represents all even numbers. I t also represents all odd 
numbers, excepting unity and those of the form ^4+5, with t=l. 
By the lemma, one of the even numbers A —40 or A —120 is repre-

* This Bulletin, vol. 33 (1927), pp. 63-70. 
f Ramanujan, loc. cit. 
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sented by (2, 3, 4); whence -4+5 is represented by (2, 3, 4, 5) with 
t = S or 2 = 5 respectively. This completes the proof of the theorem. 

One of the ternary forms, namely (2, 2, 4), involved in (2, 2, 3, 4) 
is regular; that is, the total set of numbers which it fails to repre
sent coincides with the total set of numbers in a certain collection of 
arithmetic progressions. It is this property that makes the difference 
between (2, 2, 3, 4) and (2, 3, 4, 5). Every ternary form involved in 
(2, 3, 4, 5) is irregular.* (A form ƒ is said to be irregular if there 
exists a positive integer k not represented by ƒ, but having the 
property that every arithmetic progression containing k contains 
also numbers represented b y / . ) We were able to prove Theorem 1, 
however, because two of the coefficients of the form (2 ,3 ,4 ) are not 
relatively prime. If the form represents a multiple of the common 
divisor, it becomes a multiple of the regular form (1, 2, 6). 

Either the method of Theorem 1 or else that of Theorem 2 proves 
the almost-universality of 86 of the 88 forms. The author has not 
hitherto found out whether or not the two forms (23): (1, 2, 7, 11) 
and (25): (1, 2, 7, 13) are almost-universal in the sense of this note. 
Every ternary form involved in either of the two quarternary forms 
is irregular, and no reduction of the sort described above is possible. 
Each of these forms fails to represent only one positive integer 
rc = 300. 

Professor Carmichael has recently communicated to me the follow
ing result (for the proof of which he had to employ the Dirichlet 
method of dealing with ternary forms) : The form (1, 2, 11) represents 
every even number not of the form 4(16^ — 10). With the aid of this 
result, one may prove by the methods exhibited above that the form 
(1,2 , 7, 11) is almost-universal.f 

UNIVERSITY OF ILLINOIS 

* L. E. Dickson, Annals of Mathematics, (2), vol. 28 (1927), pp. 333-341. The re
sults of this paper are not applicable to any of the ternary forms involved in (2, 3, 
4, 5), but the methods are sufficiently general to prove the assertion above. 

t The last paragraph was added in proof, January 17, 1938. 


