A REMARK ON REPRESENTATIONS OF GROUPS*

TADASI NAKAYAMA

The purpose of this short note is to remark that we can state an analog of a famous theorem of Frobenius \dagger on the induced characters of a finite group also for the representations of a general group. \ddagger This extension has not yet been explicitly stated, so far as I know, although it can be quite easily verified.

Let g be a group, and let \mathfrak{h} be a subgroup (of a finite or infinite index) of g .

Definition. Let $F(x)$ and $f(\xi)$ be almost periodic (a. p.) functions (with complex numbers as values) on \mathfrak{g} and \mathfrak{h} respectively. Then we define the compositions of $F(x)$ and $f(\xi)$ by

$$
\begin{aligned}
f \times F(x) & =M_{\xi \epsilon \epsilon}\left[f(\xi) F\left(\xi^{-1} x\right)\right] \\
F \times f(x) & =M_{\xi \epsilon \emptyset}\left[F\left(x \xi^{-1}\right) f(\xi)\right]
\end{aligned}
$$

where $M_{\xi \in \mathfrak{G}}$ means the construction of the mean with respect to a variable ξ in \mathfrak{h}. Here $f \times F(x)$ and $F \times f(x)$ are a. p. functions on \mathfrak{g}, and they are linear with respect to both factors, $f(\xi)$ and $F(x)$.

If $\mathfrak{h}_{1}, \mathfrak{h}_{2}, \mathfrak{h}_{3}$ are three subgroups of \mathfrak{g} such that $\mathfrak{G}_{i} \cong \mathfrak{h}_{k}$ or $\mathfrak{h}_{i} \supseteq \mathfrak{h}_{k}$ for every $i, k=1,2,3$, then

$$
\left(f_{1} \times f_{2}\right) \times f_{3}=f_{1} \times\left(f_{2} \times f_{3}\right)
$$

for a. p. functions $f_{1}\left(\xi_{1}\right), f_{2}\left(\xi_{2}\right), f_{3}\left(\xi_{3}\right)$ on $\mathfrak{h}_{1}, \mathfrak{h}_{2}, \mathfrak{h}_{3}$ respectively.
(Both sides of the equality are a. p. functions on the greatest among the $\mathfrak{h}_{i \text { i.) }}$) This product we denote by $f_{1} \times f_{2} \times f_{3}$.

All these statements we can prove by a procedure similar to that

[^0]of von Neumann in the paper cited. Therefore we can consider the ring $\Re_{\mathfrak{h}}$ of a. p. functions on \mathfrak{h} as a (right and left) operator-ring of the ring $\mathfrak{R}_{\mathfrak{g}}$ of a. p. functions on \mathfrak{g}. If \mathfrak{M} and \mathfrak{m} are submoduli of $\Re_{\mathfrak{g}}$ and $\Re_{\mathfrak{g}}$ respectively, then we denote by $\mathfrak{M} \times \mathfrak{m}$ the submodule of $\Re_{\mathfrak{g}}$ generated by the elements $(F \times f(x), F(x) \epsilon \mathfrak{M}, f(\xi) \epsilon \mathfrak{m})$. We define $\mathfrak{m} \times \mathfrak{M}$ in a similar manner.

Definition. Let \mathfrak{n} be a left ideal of $\mathfrak{R}_{\mathfrak{y}}$ with a finite rank with respect to the field Ω of complex numbers.* Then $\Re_{\mathfrak{g}} \times \mathfrak{n}$ is obviously a left ideal of \Re_{g} (with a finite or infinite rank with respect to Ω). We call $\Re_{\mathfrak{g}} \times \mathfrak{n}$ the left ideal of $\Re_{\mathfrak{g}}$ induced by \mathfrak{n}.

As is well known, there is an idempotent element $c(\xi)$ in $\Re_{\mathfrak{b}}$ such that $\mathfrak{n}=\Re_{\mathfrak{h}} \times c$; it is $f \times c=f$ for every $f(\xi)$ in \mathfrak{n}. If $F(x) \epsilon \Re_{\mathfrak{g}}$ and $f(\xi) \epsilon \mathfrak{n}$, then we have $F \times f=F \times(f \times c)=(F \times f) \times c \in \Re_{\mathfrak{g}} \times c$. Therefore $\Re_{\mathfrak{g}} \times \mathfrak{n}$ $\subseteq \Re_{\mathrm{g}} \times c$, and this implies $\Re_{\mathrm{g}} \times \mathfrak{n}=\Re_{\mathrm{g}} \times c$.

The ideal $\Re_{\mathfrak{g}} \times \mathfrak{n}$ consists of all functions $G(x) \epsilon \Re_{\mathfrak{g}}$ such that for every $x \in \mathfrak{g}$ the function $G(x \xi)$ of $\xi \in \mathfrak{h}$ lies in \mathfrak{n}.

Let $G(x)$ have the property stated above. Then

$$
M_{\eta \epsilon \mathfrak{\xi}}\left[G\left(x \xi \eta^{-1}\right) c(\eta)\right]=G(x \xi) ;
$$

in particular,

$$
G \times c(x)=M_{\eta \in \epsilon}\left[G\left(x \eta^{-1}\right) c(\eta)\right]=G(x),
$$

that is, $G(x) \epsilon \Re_{\mathfrak{g}} \times c=\Re_{\mathfrak{g}} \times \mathfrak{n}$.
The other half of the statement is obvious.
Now we have the following theorem:
Theorem. Let \mathfrak{n} be a minimal left ideal of $\Re_{\mathfrak{h}}$, and \mathfrak{b} the irreducible representation of \mathfrak{h} defined by \mathfrak{n}. Let \mathfrak{D} be an irreducible representation of \mathfrak{g}, and \mathfrak{S} the two-sided ideal of $\mathfrak{R}_{\mathfrak{g}}$ belonging to $\mathfrak{D} . \dagger$ We denote by $\mathfrak{D}(\mathfrak{h})$ a representation of \mathfrak{h} formed by the matrices in \mathfrak{D} which correspond to the elements of \mathfrak{h}. If the number of the irreducible constituents of $\mathfrak{D}(\mathfrak{h})$ equivalent to \mathfrak{b} is g, then the representation of \mathfrak{g} defined by the \mathfrak{S}-component $\mathfrak{S} \times \mathfrak{N}=\mathfrak{S} \times \mathfrak{n}$ of the induced left ideal $\mathfrak{N}=\Re_{\mathfrak{g}} \times \mathfrak{n}$ consists of just g irreducible constituents (equivalent to \mathfrak{D}).

Proof. \ddagger Let $E(x)$ denote the principal unit of \mathfrak{S}, and put

[^1]$\tilde{\mathfrak{R}}=\mathfrak{S} \times \mathfrak{N}=E \times \mathfrak{N}(=\mathfrak{N} \times \mathfrak{S}=\mathfrak{N} \times E)$. In the case $\tilde{\mathfrak{R}}=0$ the theorem is obvious. We assume therefore $\tilde{\mathfrak{N}} \neq 0$, that is, $c \times E \neq 0$.

If we denote the degree of the representation \mathfrak{b} by r, then the twosided ideal \mathcal{z} of $\Re_{\mathfrak{b}}$ belonging to \mathfrak{b} is a direct sum of r minimal left ideals operator-isomorphic to \mathfrak{n} :

$$
\mathfrak{B}=\mathfrak{n}^{(1)}+\mathfrak{n}^{(2)}+\cdots+\mathfrak{n}^{(r)}, \quad \mathfrak{n}^{(i)} \cong \mathfrak{n}
$$

Put $\mathfrak{N}^{(i)}=\mathfrak{R}_{\mathfrak{g}} \times \mathfrak{n}^{(i)}$ and $\tilde{\mathfrak{N}}^{(i)}=\mathfrak{S} \times \mathfrak{N}^{(i)}=\mathfrak{S} \times \mathfrak{n}^{(i)}$. It is easy to see that $\mathfrak{R}_{\mathfrak{g}} \times \mathfrak{z}$ is the direct sum $\mathfrak{N}^{(1)}+\mathfrak{N}^{(2)}+\cdots+\mathfrak{N}^{(r)}$, and also that $\mathfrak{S} \times \mathfrak{R}_{\mathfrak{g}} \times \mathfrak{B}=\mathfrak{S} \times \mathfrak{B}=\tilde{\mathfrak{N}}^{(1)}+\tilde{\mathfrak{N}}^{(2)}+\cdots+\tilde{\mathfrak{R}}^{(r)}$. Now suppose that $\tilde{\mathfrak{R}}$ is a direct sum of h minimal left ideals. (Our purpose is to show $h=g$.) Then each of $\tilde{\mathfrak{M}}^{(i)}$ has the same property: $\tilde{\mathfrak{N}}^{(i)}=\Omega_{1}{ }^{(i)}+\Omega_{2}{ }^{(i)}+\cdots+\Omega_{h}{ }^{(i)}$, for it is operator-isomorphic to \mathfrak{N}.

Let $e(\xi)$ be the principal unit of \mathcal{B}. We have $\widetilde{S} \times \mathfrak{B}=\Re_{\mathfrak{g}} \times(e \times E)$ and $e \times E=E \times e \times E=E \times e, \quad(e \times E)^{2}=E \times e \times E=e \times E$.

Moreover

$$
\mathfrak{S}=\mathbb{S} \times \mathbb{8}+\mathfrak{R}^{*}=\mathfrak{R}_{1}^{(1)}+\mathfrak{R}_{2}^{(1)}+\cdots+\mathfrak{R}_{h}^{(r)}+\mathfrak{\Omega}^{*}
$$

for a suitably chosen left ideal \mathfrak{R}^{*} of \mathfrak{S}. From this decomposition we see in the usual manner that $(e \times E) \times \mathfrak{R}_{8} \times(e \times E)$ is a matric ring of degree $r h$ (over Ω):

$$
\begin{gathered}
(e \times E) \times \Re_{\mathfrak{g}} \times(e \times E)=\sum_{\substack{k, i=1, \cdots, r \\
\mu, \lambda=1, \cdots, h}} C_{\mu \lambda}^{(k)(i)} \Omega, \\
(e \times E) \times \mathbb{R}_{\lambda}^{(i)}=\sum_{k, \mu} C_{\mu \lambda}^{(k)(i)} \Omega
\end{gathered}
$$

$\left(C_{\mu \lambda}^{(k)(i)}(x)\right.$ being matric units). Here $(e \times E) \times \mathbb{R}^{(i)}=e \times\left(E \times \mathbb{R}^{(i)}\right)$ $=e \times \mathbb{R}_{\lambda}{ }^{(i)}$, and therefore $\left(e \times \mathbb{R}_{\lambda}{ }^{(i)}: \Omega\right)=r h$.

On the other hand $\mathbb{R}^{(i)}$ is, considered as an \mathfrak{h}-left-module, completely reducible, for it defines a representation of \mathfrak{h} equivalent to $\mathfrak{D}(\mathfrak{h})$. Let $\mathfrak{R}_{\lambda}{ }^{(i)}=\mathfrak{M}_{1}+\mathfrak{M}_{2}+\cdots+\mathfrak{M}_{l}$ be its decomposition into simple (minimal) submoduli. According to our assumption just g of \mathfrak{M}_{j} are operator-isomorphic to \mathfrak{n} with respect to \mathfrak{h}, and therefore also with respect to $\Re_{\mathfrak{h}} . \dagger$ This implies $\left(e \times \Omega_{\lambda}{ }^{(i)}: \Omega\right)=r g$.

Comparing with the above result, we obtain $h=g$.

The Institute for Advanced Study

[^2]
[^0]: * Presented to the Society, October 30, 1937.
 \dagger G. Frobenius, Ueber Relationen zwischen den Charakteren einer Gruppe und denen ihrer Untergruppen, Berlin Sitzungsberichte, 1898; H. Weyl, Gruppentheorie und Quantenmechanik; J. Levitzki, Ueber vollständig reduzible Ringe und Unterringe, Mathematische Zeitschrift, vol. 33 (1931).
 \ddagger J. von Neumann, Almost periodic functions in a group, Transactions of this Society, vol. 36 (1934). Cf. also S. Bochner and J. von Neumann, Almost periodic functions in groups, II, ibid., vol. 37 (1935); W. Maak, Eine neue Definition der fastperiodischen Funktionen, Abhandlungen aus dem Mathematischen Seminar, Hamburg, vol. 11 (1936); B. L. van der Waerden, Gruppen von linearen Transformationen, Ergebnisse der Mathematik, vol. 4 (1935).

 By a representation of a group we understand always a bounded one in the field of complex numbers.

[^1]: * Note that a submodule of $\Re_{\mathfrak{g}}\left(\Re_{\mathfrak{g}}\right)$ with a finite rank with respect to Ω is a left ideal if and only if it is an \mathfrak{h}-(\mathfrak{g}-)left-module; where we define the multiplication of $\alpha \epsilon \mathfrak{h})$ and $f(\xi) \epsilon \Re_{\mathfrak{h}},\left(a \epsilon_{\mathfrak{g}}\right.$ and $\left.F(x) \epsilon \Re_{\mathfrak{g}}\right)$, by $\alpha \cdot f(\xi)=f\left(\alpha^{-1} \xi\right),\left(a \cdot F(x)=F\left(a^{-1} x\right)\right)$. Then we have $(\alpha \cdot f) \times F=\alpha \cdot(f \times F),(a \cdot F) \times f=a \cdot(F \times f)$, and so on.
 \dagger Linear aggregates of the matric elements of \mathfrak{D} form a two sided ideal of $\Re_{\mathfrak{g}}$, which is isomorphic to a matric ring.
 \ddagger The following proof is only a slight modification of the proof in Weyl, loc. cit.

[^2]: \dagger A submodule, with a finite rank, of $\Re_{\mathfrak{g}}$ is an $\Re_{\mathfrak{G}}$-left-module if and only if it is an \mathfrak{b}-left-module. Two such moduli are operator-isomorphic with respect to $\mathfrak{R}_{\mathfrak{b}}$ if and only if they are so with respect to \mathfrak{h}. The same holds for the isomorphism between such a module and a left ideal of $\Re_{\mathfrak{b}}$.

