A REMARK ON REPRESENTATIONS OF GROUPS*

TADASI NAKAYAMA

The purpose of this short note is to remark that we can state an analog of a famous theorem of Frobenius[†] on the induced characters of a finite group also for the representations of a general group.[‡] This extension has not yet been explicitly stated, so far as I know, although it can be quite easily verified.

Let \mathfrak{g} be a group, and let \mathfrak{h} be a subgroup (of a finite or infinite index) of \mathfrak{g} .

DEFINITION. Let F(x) and $f(\xi)$ be almost periodic (a. p.) functions (with complex numbers as values) on g and h respectively. Then we define the compositions of F(x) and $f(\xi)$ by

$$f \times F(x) = M_{\xi \epsilon b} [f(\xi)F(\xi^{-1}x)],$$

$$F \times f(x) = M_{\xi \epsilon b} [F(x\xi^{-1})f(\xi)];$$

where $M_{\xi \in \emptyset}$ means the construction of the mean with respect to a variable ξ in \mathfrak{h} . Here $f \times F(x)$ and $F \times f(x)$ are a. p. functions on \mathfrak{g} , and they are linear with respect to both factors, $f(\xi)$ and F(x).

If \mathfrak{h}_1 , \mathfrak{h}_2 , \mathfrak{h}_3 are three subgroups of \mathfrak{g} such that $\mathfrak{h}_i \subseteq \mathfrak{h}_k$ or $\mathfrak{h}_i \supseteq \mathfrak{h}_k$ for every i, k = 1, 2, 3, then

$$(f_1 \times f_2) \times f_3 = f_1 \times (f_2 \times f_3)$$

for a. p. functions $f_1(\xi_1)$, $f_2(\xi_2)$, $f_3(\xi_3)$ on \mathfrak{h}_1 , \mathfrak{h}_2 , \mathfrak{h}_3 respectively.

(Both sides of the equality are a. p. functions on the greatest among the \mathfrak{h}_i .) This product we denote by $f_1 \times f_2 \times f_3$.

All these statements we can prove by a procedure similar to that

[‡] J. von Neumann, Almost periodic functions in a group, Transactions of this Society, vol. 36 (1934). Cf. also S. Bochner and J. von Neumann, Almost periodic functions in groups, II, ibid., vol. 37 (1935); W. Maak, Eine neue Definition der fastperiodischen Funktionen, Abhandlungen aus dem Mathematischen Seminar, Hamburg, vol. 11 (1936); B. L. van der Waerden, Gruppen von linearen Transformationen, Ergebnisse der Mathematik, vol. 4 (1935).

By a representation of a group we understand always a bounded one in the field of complex numbers.

^{*} Presented to the Society, October 30, 1937.

[†] G. Frobenius, Ueber Relationen zwischen den Charakteren einer Gruppe und denen ihrer Untergruppen, Berlin Sitzungsberichte, 1898; H. Weyl, Gruppentheorie und Quantenmechanik; J. Levitzki, Ueber vollständig reduzible Ringe und Unterringe, Mathematische Zeitschrift, vol. 33 (1931).

of von Neumann in the paper cited. Therefore we can consider the ring $\Re_{\mathfrak{h}}$ of a. p. functions on \mathfrak{h} as a (right and left) operator-ring of the ring $\Re_{\mathfrak{g}}$ of a. p. functions on g. If \mathfrak{M} and \mathfrak{m} are submoduli of $\Re_{\mathfrak{g}}$ and $\Re_{\mathfrak{h}}$ respectively, then we denote by $\mathfrak{M} \times \mathfrak{m}$ the submodule of $\Re_{\mathfrak{g}}$ generated by the elements $(F \times f(x), F(x) \epsilon \mathfrak{M}, f(\xi) \epsilon \mathfrak{m})$. We define $\mathfrak{m} \times \mathfrak{M}$ in a similar manner.

DEFINITION. Let n be a left ideal of $\Re_{\mathfrak{h}}$ with a finite rank with respect to the field Ω of complex numbers.* Then $\Re_{\mathfrak{g}} \times \mathfrak{n}$ is obviously a left ideal of $\Re_{\mathfrak{g}}$ (with a finite or infinite rank with respect to Ω). We call $\Re_{\mathfrak{g}} \times \mathfrak{n}$ the left ideal of $\Re_{\mathfrak{g}}$ induced by n.

As is well known, there is an idempotent element $c(\xi)$ in $\mathfrak{R}_{\mathfrak{h}}$ such that $\mathfrak{n} = \mathfrak{R}_{\mathfrak{h}} \times c$; it is $f \times c = f$ for every $f(\xi)$ in \mathfrak{n} . If $F(x) \in \mathfrak{R}_{\mathfrak{g}}$ and $f(\xi) \in \mathfrak{n}$, then we have $F \times f = F \times (f \times c) = (F \times f) \times c \in \mathfrak{R}_{\mathfrak{g}} \times c$. Therefore $\mathfrak{R}_{\mathfrak{g}} \times \mathfrak{n} = \mathfrak{R}_{\mathfrak{g}} \times c$, and this implies $\mathfrak{R}_{\mathfrak{g}} \times \mathfrak{n} = \mathfrak{R}_{\mathfrak{g}} \times c$.

The ideal $\Re_{\mathfrak{g}} \times \mathfrak{n}$ consists of all functions $G(x) \in \Re_{\mathfrak{g}}$ such that for every xeg the function $G(x\xi)$ of $\xi \in \mathfrak{h}$ lies in \mathfrak{n} .

Let G(x) have the property stated above. Then

$$M_{\eta \in \mathfrak{h}}[G(x\xi\eta^{-1})c(\eta)] = G(x\xi);$$

in particular,

$$G \times c(x) = M_{\eta \in \mathfrak{h}}[G(x\eta^{-1})c(\eta)] = G(x)$$

that is, $G(x) \in \Re_{\mathfrak{g}} \times c = \Re_{\mathfrak{g}} \times \mathfrak{n}$.

The other half of the statement is obvious. Now we have the following theorem:

THEOREM. Let n be a minimal left ideal of $\Re_{\mathfrak{h}}$, and \mathfrak{h} the irreducible representation of \mathfrak{h} defined by n. Let \mathfrak{D} be an irreducible representation of \mathfrak{g} , and \mathfrak{S} the two-sided ideal of $\Re_{\mathfrak{g}}$ belonging to \mathfrak{D} .[†] We denote by $\mathfrak{D}(\mathfrak{h})$ a representation of \mathfrak{h} formed by the matrices in \mathfrak{D} which correspond to the elements of \mathfrak{h} . If the number of the irreducible constituents of $\mathfrak{D}(\mathfrak{h})$ equivalent to \mathfrak{d} is \mathfrak{g} , then the representation of \mathfrak{g} defined by the \mathfrak{S} -component $\mathfrak{S} \times \mathfrak{N} = \mathfrak{S} \times \mathfrak{n}$ of the induced left ideal $\mathfrak{N} = \mathfrak{R}_{\mathfrak{g}} \times \mathfrak{n}$ consists of just \mathfrak{g} irreducible constituents (equivalent to \mathfrak{D}).

PROOF.[‡] Let E(x) denote the principal unit of \mathfrak{S} , and put

[‡] The following proof is only a slight modification of the proof in Weyl, loc. cit.

^{*} Note that a submodule of $\Re_{\mathfrak{h}}(\mathfrak{N}_{\mathfrak{g}})$ with a finite rank with respect to Ω is a left ideal if and only if it is an $\mathfrak{h}(\mathfrak{g})$ -left-module; where we define the multiplication of $\alpha \epsilon \mathfrak{h}$ and $f(\xi) \epsilon \mathfrak{R}_{\mathfrak{h}}$, $(a \epsilon_{\mathfrak{g}} \text{ and } F(x) \epsilon \mathfrak{R}_{\mathfrak{g}})$, by $\alpha \cdot f(\xi) = f(\alpha^{-1}\xi)$, $(a \cdot F(x) = F(a^{-1}x))$. Then we have $(\alpha \cdot f) \times F = \alpha \cdot (f \times F)$, $(a \cdot F) \times f = a \cdot (F \times f)$, and so on.

[†] Linear aggregates of the matric elements of \mathfrak{D} form a two sided ideal of $\mathfrak{R}_{\mathfrak{g}}$, which is isomorphic to a matric ring.

 $\tilde{\mathfrak{N}} = \mathfrak{S} \times \mathfrak{N} = E \times \mathfrak{N} (= \mathfrak{N} \times \mathfrak{S} = \mathfrak{N} \times E)$. In the case $\tilde{\mathfrak{N}} = 0$ the theorem is obvious. We assume therefore $\tilde{\mathfrak{N}} \neq 0$, that is, $c \times E \neq 0$.

If we denote the degree of the representation \mathfrak{d} by r, then the twosided ideal \mathfrak{d} of $\mathfrak{R}_{\mathfrak{d}}$ belonging to \mathfrak{d} is a direct sum of r minimal left ideals operator-isomorphic to \mathfrak{n} :

$$\mathfrak{s} = \mathfrak{n}^{(1)} + \mathfrak{n}^{(2)} + \cdots + \mathfrak{n}^{(r)}, \qquad \mathfrak{n}^{(i)} \cong \mathfrak{n}.$$

Put $\mathfrak{N}^{(i)} = \mathfrak{R}_{\mathfrak{g}} \times \mathfrak{n}^{(i)}$ and $\mathfrak{\tilde{N}}^{(i)} = \mathfrak{S} \times \mathfrak{N}^{(i)} = \mathfrak{S} \times \mathfrak{n}^{(i)}$. It is easy to see that $\mathfrak{R}_{\mathfrak{g}} \times \mathfrak{s}$ is the direct sum $\mathfrak{N}^{(1)} + \mathfrak{N}^{(2)} + \cdots + \mathfrak{N}^{(r)}$, and also that $\mathfrak{S} \times \mathfrak{R}_{\mathfrak{g}} \times \mathfrak{s} = \mathfrak{S} \times \mathfrak{s} = \mathfrak{\tilde{N}}^{(1)} + \mathfrak{\tilde{N}}^{(2)} + \cdots + \mathfrak{\tilde{N}}^{(r)}$. Now suppose that $\mathfrak{\tilde{N}}$ is a direct sum of *h* minimal left ideals. (Our purpose is to show h = g.) Then each of $\mathfrak{\tilde{N}}^{(i)}$ has the same property: $\mathfrak{\tilde{N}}^{(i)} = \mathfrak{L}_1^{(i)} + \mathfrak{L}_2^{(i)} + \cdots + \mathfrak{L}_h^{(i)}$, for it is operator-isomorphic to $\mathfrak{\tilde{N}}$.

Let $e(\xi)$ be the principal unit of \mathfrak{s} . We have $\mathfrak{S} \times \mathfrak{s} = \mathfrak{R}_{\mathfrak{g}} \times (e \times E)$ and $e \times E = E \times e \times E = E \times e$, $(e \times E)^2 = E \times e \times E = e \times E$.

Moreover

$$\mathfrak{S} = \mathfrak{S} \times \mathfrak{s} + \mathfrak{k}^* = \mathfrak{k}_1^{(1)} + \mathfrak{k}_2^{(1)} + \cdots + \mathfrak{k}_h^{(r)} + \mathfrak{k}^*$$

for a suitably chosen left ideal \mathfrak{V}^* of \mathfrak{S} . From this decomposition we see in the usual manner that $(e \times E) \times \mathfrak{N}_{\mathfrak{g}} \times (e \times E)$ is a matric ring of degree rh (over Ω):

$$(e \times E) \times \mathfrak{R}_{\mathfrak{g}} \times (e \times E) = \sum_{\substack{k, i=1, \cdots, r \\ \mu, \lambda=1, \cdots, h}} C_{\mu\lambda}^{(k)(i)} \Omega,$$
$$(e \times E) \times \mathfrak{R}_{\lambda}^{(i)} = \sum_{k, \mu} C_{\mu\lambda}^{(k)(i)} \Omega,$$

 $(C_{\mu\lambda}^{(k)(i)}(x)$ being matric units). Here $(e \times E) \times \mathfrak{X}_{\lambda}^{(i)} = e \times (E \times \mathfrak{X}_{\lambda}^{(i)})$ = $e \times \mathfrak{X}_{\lambda}^{(i)}$, and therefore $(e \times \mathfrak{X}_{\lambda}^{(i)}:\Omega) = rh$.

On the other hand $\mathfrak{A}_{\lambda}^{(i)}$ is, considered as an \mathfrak{h} -left-module, completely reducible, for it defines a representation of \mathfrak{h} equivalent to $\mathfrak{D}(\mathfrak{h})$. Let $\mathfrak{A}_{\lambda}^{(i)} = \mathfrak{M}_1 + \mathfrak{M}_2 + \cdots + \mathfrak{M}_l$ be its decomposition into simple (minimal) submoduli. According to our assumption just g of \mathfrak{M}_i are operator-isomorphic to \mathfrak{n} with respect to \mathfrak{h} , and therefore also with respect to $\mathfrak{R}_{\mathfrak{h}}$, This implies $(e \times \mathfrak{A}_{\lambda}^{(i)}: \Omega) = rg$.

Comparing with the above result, we obtain h = g.

THE INSTITUTE FOR ADVANCED STUDY

1938]

 $[\]dagger$ A submodule, with a finite rank, of \Re_g is an \Re_b -left-module if and only if it is an \mathfrak{h} -left-module. Two such moduli are operator-isomorphic with respect to \Re_b if and only if they are so with respect to \mathfrak{h} . The same holds for the isomorphism between such a module and a left ideal of \Re_b .