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A QUADRATIC FORM PROBLEM IN THE CALCULUS 
OF VARIATIONS* 

A. ADRIAN ALBERT 

The problem which we shall discuss arose in connection with suffi
ciency theorems in the multiple integral problem of the calculus of 
variations. I t was proposed by Professor G. A. Bliss to his University 
of Chicago seminar (summer, 1937) and communicated to the author 
by Professor W. T. Reid. The result of the author's investigation 
presented here is a very interesting theorem on real quadratic forms. 

We first have the trivial lemma: 

LEMMA 1. Let f and g be real quadratic forms l/Yv X\ J * * * J Xft , and g be 
negative definite. Then there exists a real non-singular linear transfor
mation carrying g and ƒ respectively into 

G = — (#i2 + • • • + xi), F = Xi^i2 + • • • + Xn#n , 

where the Xt- are the roots of the determinant | /+Xg | =0f and may be 
arranged so that 

(1) Xw ^ Xn_! è • • • ^ Xi. 

Moreover ƒ+Xg is positive definite if and only if 

(2) Xi > X > - oo. 

For we may carry g into G. Apply a real orthogonal transformation 
carrying the resulting ƒ into diagonal form F. The X* are clearly the 
roots of | F+\G\ = 0 and hence of | /+Xg| =0 . Finally ƒ+Xg is posi
tive definite if and only if F+\G is positive definite, that is if 
Xi-X^Xi-XX). 

We next derive the following lemma : 

LEMMA 2. Let g be non-singular and indefinite of index p, and let 
there exist a real Xo such that ƒ+Xog = h is positive definite. Then there 
exists a real non-singular linear transformation carrying g and ƒ re
spectively into 

G = Xi2 + • • • + X$ - (x*+1 + • • • + X%), 

F = - (Xi#i2 + • • • + \PX$) + Xp+i#p+i2 + • • • + Xn#n
2 , 

* Presented to the Society, November 27, 1937. 
t By this we mean the determinant of the matrix corresponding to the pencil of 

forms/+Xg. 
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with \i the roots of | /+Xg | = 0 . Moreover 

(4) X/ > X*, i = 1, • • • , p; j = p + 1, • • • », 

so that we may arrange the roots in the order 

(5) X» à Xn_! ^ à Xp+1 > X p è Xp_i è • • • £ Xi. 

Finally ƒ+Xg is positive definite if and only if 

(6) Xp+i > X > Xp. 

For as in Lemma 1 we carry h to Ji2 + • • • + ?n and then apply 
an orthogonal transformation leaving A unaltered and carrying g 
intoXX-iS^i2 for real 5 ^ 0 . Let x<=|ô<|1/2&; then g=]£<n-i±fltf, 
h=y%2tmtl\ ôi\~1xl2. The index of g is an invariant and g may then be 
carried into G. But A is diagonal and hence so is f — h— Xog. Write 
ƒ=*• as in (3); then F+XG = E f - i ( X - X O ^ + E * . p + i ( X / - X ) ^ so 
that the Xt- are the characteristic roots of | /+Xg | = 0 . The value 
Xk = 0 for ky^i and j , Xi = Xj = l, i and j as in (4), gives g = 0, 
h = f+\og=f = \j—\i>0, and we have (4). Then F+\G, and hence 
/+Xg, is positive definite if and only if X,->X>X»-, which is satisfied if 
and only if (6) holds. 

Observe that Lemma 1 becomes a special case of Lemma 2 if we 
allow p = 0 and X0 = — °°. 

THEOREM. Let ƒ and g be real quadratic forms %n X\) ' * * j Xfif and 
let f be positive for all real Xi not all zero such that g = 0. Then there 
exists a real number X such that ƒ+Xg is positive definite. 

The properties of the theorem are clearly invariant under real 
non-singular linear transformations, and under replacement of g by 
lig for ix real and not zero. We shall use such transformations. 

The result is true for n = 1 since then either g = 0 and ƒ is necessarily 
positive definite, or we may take g = x2, f = ax2> / + ( 1 — a)g = x2 posi
tive definite. We thus make an induction and assume our theorem for 
forms in n — 1 variables. 

If the rank of g were r<n,we could take g to be a form in x\, • • •, xT. 
Then xi= • • • =xr = 0 in ƒ gives a form/ 2=/ 2 (x r + i , • • • , xn)>0 for 
all x r+i, • • • , xn not all zero. Hence ƒ2 is definite and may be taken to 
be xr+1-{- • • • +xn

2 by a transformation on xr+i, • • • , xn not alter
ing g. Thus f=X2

r+1+ • • • + Xn
2 + 2yjTti-r+l%iLi + fl(Xl> ' ' ' , #r)i 

where the Li are linear forms in #i, • • • , xr. The transformation 

Xi = %i + Li} Xj = Xj, j = 1, • • • , r\ i = r + 1, • • • , n, 
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does not alter the form of g and carries ƒ into X*+1-{- • • • +X% 
+ F(X1} • • • , Xr), g into G(Xly • • • , Xr). Put Xr+1= • • • =Xn = 0 
and have F > 0 f or all X ,• not all zero such that G = 0. Then F+XG is pos
itive definite for a realXand so is X^ + 1 + • • • -\-X% + F+\G =/+Xg. 

Hence let g be non-singular. Our result follows from Lemma 1 if g 
is definite. Now let g be indefinite and apply a linear transformation 
carrying g into the form (3). Then /o= / (0 , x2, • • • , x w )>0 for all 
X2, • • • , xn not all zero and making go = g(0, #2, * • • , #n) =0 . By the 
hypothesis of our induction we may apply Lemma 2 and write either 

(7) ƒ0 = ~ (X2#22 + • * • + KXP) + Xp+iffp+i + ' ' * + X«^2 > 

where 

(8) Xn = Xn_x = = Xp+i > Xp = Xp_i = • • • ^ X2, 

or 

(9) p = 1, /o = X2*2
2 + • • • + X n ^ 2 , Xn = • • • = X2. 

In the respective cases we take X in the intervals 

(10) Xp+i > X > Xp , X2 > X > - 00. 

Now 
n 

(11) ƒ = /o + 2 52 M»ffi + a#i2 

so that 

(12) 

2? / b-xi \ 2 

/ + xg = E (*-*<)(*<+ T - J - - ) 
i=2 \ A — A* / 

A / &y î \ 2 

+ Z (X/-X)(^- + - - ) + ^0(X), 
j=p-l-i \ Xy — X / 
3=P+1 

where 

/ v h? JL b? \ 

(13) *(X) = a + X - ( £ + E r^V 
\ i=2 A — Ai j = p + i Ay — A / 

The values 

b% bj 
(14) fft- = ; Xj — > # i = l , 

X — Ai Xy — X 

* = 2, • •• ,# ;ƒ = p+ 1, • • • 

make 
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(15) ƒ + Xg = *(X), g = 1 + £ h \ - £ b \ = *'(X), 

a rational function of X continuous in the interval (11). 
If all the bk^O we have 0'(Xp+i) = — 00, 0'(Xp) =00 if p>l, while 

if p = 1, then </>'(— <*>) = 1 > 0 . Hence there exists a X in the intervals 
(10) such that <£'(X)=g = 0. But then our hypothesis states that 

f=</>(\) > 0 . By (12), and since <£(X) > 0 , we have /+Xg positive defi
nite. 

There remains the case where some && = 0. Here we may permute 
the X{ and change the sign of g if necessary and carry the correspond
ing Xk into xi. Then ƒ = — Xi#i2 +fo(x2, • • • , xn). As in the proof above 
we may carry f0 into (7) and have ƒ in the form (3). B u t / > 0 for 
g = 0 and as in the proof of Lemma 2 we have (5), and /+Xg is posi
tive definite for X as in (6). 

We have proved our theorem. Notice that our reduction to the 
case g non-singular together with Lemmas 1, 2 determines the range 
of X for which ƒ+Xg is positive definite. 

T H E UNIVERSITY OF CHICAGO 

THE RIEMANNIAN CURVATURE OF A HYPERSURFACE* 

AARON FIALKOWf 

1. Introduction. I t is a well known theorem of Gauss that the total 
curvature of any two dimensional surface in euclidean three space is 
equal to the product of the principal normal curvatures. Eisenhartt 
has shown that a generalization of this theorem applies to Riemann 
spaces of class one; that is, the hypersurfaces of an ^-dimensional flat 
space. He proves the theorem: 

When the lines of curvature of a Riemann space Vn of class one are 
real and none of them is tangent to a null vector, the Riemannian curva
ture at a point for the orientation determined by the direction of two lines 
of curvature at the point is numerically equal to the product of the corre
sponding normal curvatures) the sign is determined by the character of 
the normal to Vn in the enveloping flat Vn+i. 

* Presented to the Society, September 10, 1937. 
t National Research Fellow. 
I L. P. Eisenhart, Riemannian Geometry, 1926, p. 199. 


