A NOTE ON FREDHOLM-STIELTJES INTEGRAL EQUATIONS*

F. G. DRESSEL

1. Introduction. The object of this paper is to show that the integral equation \dagger

$$
\begin{equation*}
f(x)=m(x)+\lambda \int_{0}^{1} f(y) d G(x, y), \quad 0 \leqq x, y \leqq 1 \tag{1}
\end{equation*}
$$

can be changed into an ordinary Fredholm equation when $G(x, y)$ is absolutely continuous $g(y) \ddagger$ The integration is carried out in the Young-Stieltjes sense, and $g(y)$ is a bounded, monotone increasing function.
2. Lemmas. If $h(x)$ is of bounded variation and we set $h(x)=h(0)$, $(x<0)$, and $h(x)=h(1),(x>1)$, then we may define the completely additive function of sets $\bar{h}(e)$ by

$$
\bar{h}(e)=h\left(x_{2}+0\right)-h\left(x_{1}-0\right), \quad e=e\left(x_{1} \leqq t \leqq x_{2}\right)
$$

Using this notation we have the following lemma:
Lemma 1. If $f(x)$ is measurable Borel then

$$
\int_{0}^{1} f(x) d h(x)=\int_{0}^{1} f(x) d \bar{h}
$$

the left side being Young-Stieltjes integration, the right Radon-Stieltjes.
In case one integral does not exist the equality sign is taken to mean that the other integration is non-existent. Because of the properties of the integrals under consideration, we need only prove the equality for the functions

$$
\begin{aligned}
f_{1}(x) & =1, x=\alpha, & f_{2}(x) & =1,0 \leqq \alpha<x<\beta \leqq 1, \\
& =0, x \neq \alpha ; & & =0, \text { elsewhere } .
\end{aligned}
$$

[^0]We have

$$
\begin{aligned}
& \int_{0}^{1} f_{1}(x) d h(x)=h(\alpha+0)-h(\alpha-0)=\bar{h}(\alpha)=\int_{0}^{1} f_{1}(x) d \bar{h} \\
& \int_{0}^{1} f_{2}(x) d h(x)=h(\beta-0)-h(\alpha+0)=\bar{h}(e)=\int_{0}^{1} f_{2}(x) d \bar{h}
\end{aligned}
$$

where e is the open set $\alpha<t<\beta$.*
Lemma 2. If $G(x)$ is absolutely continuous with respect to the bounded monotone increasing function $g(x)$, then

$$
\int_{0}^{1} f(x) d G(x)=\int_{0}^{1} f(x) D G(x) d g(x)
$$

where $D G(x)$ is the derivative or one of the derived numbers of $G(x)$ with respect to $g(x)$.

Mr. Maria \dagger has made the important step in the proof of the lemma by showing that

$$
G\left(x_{2}+0\right)-G\left(x_{1}-0\right)=\int_{E} D G(x) d \bar{g}
$$

where E is the set $x_{1} \leqq t \leqq x_{2}$. For the function $f_{1}(x)$, making use of Lemma 1, we have

$$
\begin{aligned}
\int_{0}^{1} f_{1}(x) d G(x) & =G(\alpha+0)-G(\alpha-0) \\
\int_{0}^{1} f_{1}(x) D G(x) d g(x) & =\int_{0}^{1} f_{1}(x) D G(x) d \bar{g}=\int_{E} D G(x) d \bar{g} \\
& =G(\alpha+0)-G(\alpha-0)
\end{aligned}
$$

where E is the point α. For $f_{2}(x)$ we have, if e is the open set $\alpha<x<\beta$,

$$
\begin{aligned}
\int_{0}^{1} f_{2}(x) d G(x) & =G(\beta-0)-G(\alpha+0) \\
\int_{0}^{1} f_{2}(x) D G(x) d g(x) & =\int_{0}^{1} f_{2}(x) D G(x) d \bar{g}=\int_{e} D G(x) d \bar{g} \\
& =G(\beta-0)-G(\alpha+0)
\end{aligned}
$$

From the above material the lemma readily follows.

[^1]3. Transformations. Our first theorem is the following.

Theorem 1. If $G(x, y)$ is absolutely continuous $g(y)$ then equation (1) can be written in the form

$$
\begin{equation*}
f(x)=m(x)+\lambda \int_{0}^{1} K(x, y) f(y) d g(y), \tag{2}
\end{equation*}
$$

where $K(x, y)=D G(x, y)$, the derivative being taken with respect to $g(y)$, a bounded monotone increasing function.

This is immediate from Lemma 2.
Theorem 2. If $m(x)$ and $K(x, y)$ are bounded, then the solution of (1) and (2), except for characteristic values of λ, can be written

$$
\begin{equation*}
f(x)=m(x)+\lambda \int_{0}^{1} \frac{D(x, y ; \lambda)}{D(\lambda)} m(y) d g(y) \tag{3}
\end{equation*}
$$

where

$$
\begin{aligned}
D(\lambda) & =1-\lambda \int_{0}^{1} K(s, s) d g(s)+\cdots \\
D(x, y ; \lambda) & =K(x, y)-\lambda \int_{0}^{1}\left|\begin{array}{ll}
K(x, y) & K(x, s) \\
K(s, y) & K(s, s)
\end{array}\right| d g(s)+\cdots
\end{aligned}
$$

The proof follows along the same lines as in the ordinary case. We now state a corollary of Theorem 2 that represents most of the known results concerning solutions of equation (1).

Corollary.* If $\left|G\left(x, y_{2}\right)-G\left(x, y_{1}\right)\right| \leqq\left|g\left(y_{2}\right)-g\left(y_{1}\right)\right|$, then, excepting characteristic values, equation (1) has (3) as a solution.

Any result for the ordinary Fredholm equation carries a related result for equation (1). To see this, we assume without loss of generality that $g\left(y_{1}\right)<g\left(y_{2}\right)$ if $y_{1}<y_{2}$, and apply to (2) the transformation \dagger

$$
\beta(s)=\lim \sup E_{y}(s \geqq g(y)), \quad g(0) \leqq s \leqq g(1),
$$

$$
\begin{align*}
f(x) & =m(x)+\lambda \int_{0}^{1} K(x, y) f(y) d g(y) \tag{4}\\
& =m(x)+\lambda \int_{g(0)}^{g(1)} K(x, \beta(s)) f(\beta(s)) d s
\end{align*}
$$

[^2]If we let ω be any of the possible solutions of

$$
x=\beta(\omega), \quad g(0) \leqq \omega \leqq g(1),
$$

we may write (4) in the form

$$
F(\omega)=M(\omega)+\lambda \int_{g(0)}^{g(1)} k(\omega, s) F(s) d s
$$

where $F(\omega)=f(\beta(\omega)), M(\omega)=m(\beta(\omega)), k(\omega, s)=K(\beta(\omega), \beta(s))$. We thus have our main result:

Theorem 3. When $G(x, y)$ is absolutely continuous $g(y)$ the Fred-holm-Stieltjes integral equation (1) is reducible to an ordinary Fredholm integral equation.

4. Mixed linear equations. The mixed equation*

$$
\begin{equation*}
f(x)=m(x)+\sum_{i=1}^{m} \lambda K^{(i)}(x) f\left(s_{i}\right)+\lambda \int_{0}^{1} K(x, s) f(s) d s \tag{5}
\end{equation*}
$$

can easily be put into the form

$$
f(x)=m(x)+\lambda \int_{0}^{1} R(x, s) f(s) d g(s) .
$$

Thus from Theorem 3 we see that equation (5) is reducible to a Fredholm integral equation.

Duke University

A THEOREM ON QUADRATIC FORMS \dagger

WILLIAM T. REID
In this note the following result is proved:
Theorem. Suppose $A[x] \equiv a_{\alpha \beta} x_{\alpha} x_{\beta}, \ddagger B[x] \equiv b_{\alpha \beta} x_{\alpha} x_{\beta}$ are real quadratic forms in $\left(x_{\alpha}\right),(\alpha=1, \cdots, n)$, and that $A[x]>0$ for all real $\left(x_{\alpha}\right) \neq\left(0_{\alpha}\right)$ satisfying $B[x]=0$. Then there exists a real constant λ_{0} such that $A[x]-\lambda_{0} B[x]$ is a positive definite quadratic form.

This theorem is of use in considering the Clebsch condition for multiple integrals in the calculus of variations. A. A. Albert§ has given

[^3]
[^0]: * Presented to the Society, December 29, 1936.
 \dagger For a discussion of (1) see G. C. Evans and O. Veblen, The Cambridge Colloquium Lectures on Mathematics, American Mathematical Society Colloquium Publications, vol. 5, 1922, p. 101.
 \ddagger For terminology see Alfred J. Maria, Generalized derivatives, Annals of Mathematics, vol. 28 (1926-1927), pp. 419-432. I am much indebted to Mr. Maria for many valuable suggestions.

 All functions used in the present paper are assumed to be measurable Borel.

[^1]: * The same reasoning shows that $\int_{0}^{x} f(t) d h(t)$ is equal to $\int_{0}^{x} f(t) d \bar{h}$, for $0<x \leqq 1$, if $h(t)$ is continuous from the right except perhaps at $x=0$.
 \dagger Loc. cit., p. 430.

[^2]: * This includes the case handled by W. C. Randels, On Volterra-Stieltjes integral equations, Duke Mathematical Journal, vol. 1 (1935), pp. 538-542.
 \dagger Banach, Théorie des Opérations Linéaires, Warsaw, 1932, p. 6.

[^3]: * W. A. Hurwitz, Mixed linear integral equations of the first order, Transactions of this Society, vol. 16 (1915), pp. 121-133.
 \dagger Presented to the Society, December 30, 1937.
 \ddagger The tensor analysis summation convention is used throughout.
 § This Bulletin, vol. 44 (1938), pp. 250-253.

