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If we let co be any of the possible solutions of 

* = /3(«), «(0) ^ c o ^ g ( l ) , 

we may write (4) in the form 

*(«, s)F(s)ds, 
0(0) 

where F(fa)=f(P(<o)), M(co) =m(j3(co)), *(«, s)=i£(/3(co), 18(5)). We 
thus have our main result: 

THEOREM 3. PP7zew G(x, y) is absolutely continuous g(y) the Fred-
holm-Stieltjes integral equation (1) is reducible to an ordinary Fredholm 
integral equation. 

4. Mixed linear equations. The mixed equation* 

m /• 1 

(5) ƒ(*) = m(x) + ]T \KW(x)f(si) + X £ (* , *)ƒ(*)<** 
i=i J o 

can easily be put into the form 

ƒ(*) = w(*) + X f * ( * , *)ƒ(*)<*«(*)• 
J o 

Thus from Theorem 3 we see that equation (5) is reducible to a 
Fredholm integral equation. 
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In this note the following result is proved : 

THEOREM. Suppose A [x]^aa^xax^,X B[x]=bafiXaX0 are real quad
ratic forms in (#«), (a = l, • • • , »), and that A[x]>0 for all real 
(xa) 5e (0a) satisfying B[x]=0. Then there exists a real constant Xo such 
that A [x] — Xo-B [x] is a positive definite quadratic form. 

This theorem is of use in considering the Clebsch condition for 
multiple integrals in the calculus of variations. A. A. Albert§ has given 

* W. A. Hurwitz, Mixed linear integral equations of the first order, Transactions 
of this Society, vol. 16 (1915), pp. 121-133. 

t Presented to the Society, December 30,1937. 
% The tensor analysis summation convention is used throughout. 
§ This Bulletin, vol. 44 (1938), pp. 250-253. 
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an algebraic proof of this result. The following proof is more analytic 
in character than that of Albert and is of interest because in the proof 
itself we obtain directly, in terms of the roots of the characteristic 
equation (1) below, the interval in which the value Xo of the theorem 
may be chosen. 

Suppose that the matrix | | ^ | | has rank n — r, (Q^r<n), and let 
Ua MaKi (K = 1, • • • , r), be linearly independent solutions of the equa
tions bapUp = 0, (a = ly - - - ,n). 

LEMMA 1. The characteristic equation 

(1) DQi) s | aap - \ba£ | = 0 

is a polynomial of degree n — rin\. 

Let Uar+sy (s = 1, • • , n — r), be sets linearly independent of 
the above defined uaK and such that the determinant |wa /j | , 
(a, j8 = l, • • • , n)> is different from zero. Clearly the degree of 
DÇK) is equal to that of the polynomial DXÇK) = | (aay — \bay)uyp\. 
Since the first r columns of DiQs) are independent of X, we obvi
ously have dkD1/d\k = 0 if k>n — r. Also, the (n — r)th derivative is 
equal to (n — r) !| aayuyK — bayuyr+s\, (/c = l, • • • , r\ s = l, • • • , n — r); 
and if its value is zero, there are constants ( ^ ^ ( O a ) such that 
ua° =UaKCK1 Ua =uar+sCr+s satisfy the equations aa$u§ =ba$up . By use 
of these equations together with ua

0bap = 0(3 we have A [u°] = 0; hence 
(ua°) = (0a), by the hypothesis of the theorem, and consequently 
(cK) = (0*). This implies in turn that bapup = 0 a ; and since (uJD^^a) 
and is independent of the sets uaK, (/c = 1, • • • , r), we have a contra
diction to the assumption that \\bap\\ is of rank n — r. The above lemma 
is therefore proved. 

Corresponding to a root of (1) the number of linearly independent 
solutions of the associated equations 

(2) (aap - \ba{î)yv = 0 t t, a, 0 = 1, • • • , », 

is termed the index of X as a root of (1). For sets xj ==(#«'),#«" ==(#«") 
we denote by ^4[x'; # " ] , B[x'; x"] the bilinear forms aa^xa Xp , 
OapXa Xp ' . The first of the following lemmas is immediate. 

LEMMA 2. If X', X" are distinct zeros of DÇK), and yj, ya" are solu
tions of the corresponding equations (2), then B [y'; y"\ = 0 —A [y'; y"]. 

LEMMA 3. The zeros of D(K) are all real, and the corresponding solu
tions of (2) may be chosen real. 



1938] QUADRATIC FORMS 439 

For suppose X' =Xi+iX2, (X2^0), is a zero of D(K)y and y'a =ya\ +iy«2 
is a corresponding solution of (2). Then the conjugate values ya sat
isfy (2) for X=X'. By Lemma 2 we have 0=A [y; y]=A [yi]+A [y2], 
0=B[y; y]=B[yi]+B[y2]. Now if either B[yi] or B[y2] is zero, so 
also is the other, and, in view of the hypothesis of the theorem, 
we have a contradiction. On the other hand, if .Bb^J^O, let c be 
a value opposite in sign to \2/B[yi] and such that 0=j?[3^1+^2] 
= B[y1] + 2cB[yi;y2] + c*B[y2] = (l-c2)Bly1] + 2cB[y1;y2]. Using the 
relations satisfied by yai, ya2 one obtains, by direct calculation, 
A[y1+cy2] = (2c\2/B[yl])({B[y1]}2+{B[y1; ;y2]}2)<0, which is a 
contradiction. Hence there are no complex zeros of D(k), and the 
solutions of equations (2) may be chosen real. 

LEMMA 4. If X=X' is a zero of DÇK), then its index is equal to its 
multiplicity. 

Suppose the index of X' is equal to £, and denote by ya=yai, 
(j = l, • • • , k), corresponding linearly independent solutions of (2). 
Now choose yah, (h = k + l, • • • , n), such that the determinant \yap\, 
(a, /3 = 1, • • • , n)y is different from zero. Clearly the multiplicity of 
X' as a zero of D(K) is equal to its multiplicity as zero of 

A(X) = I (aay—\bay)y^\. 
Since the first k columns of A(X) are zero for X = X', the multiplicity 
of X' as a* zero of A(X) is not less than k. Moreover, 

dkA/d\k |x=x' = kl I - bapypj (a«/3 - X^a/3)^ |, 

j = 1, • • • , k; h = k + 1, • • • , n. 

Now if this derivative is zero, there are constants (ca) 9^ (0a) such that 
the set ;y«° =yajCjy yJ —yahCh satisfies 

(4) (aap — \'ba{i)yp = bapyl-

Since {y£) satisfies (2) for X=X' we find from (4) that B[y°] = 0, and 
consequently, using again equations (2), that A [y°] = 0. In view of 
the hypothesis of the theorem it then follows that (y£ ) = (0a) and 
(cj) = (0y). But from equations (4) we see that {yd ) is then a solution 
of (2) for X=X'; and, since this set is independent of the k sets yaj, 
we have a contradiction to the assumption that k is the index of X'. 
Hence the expression (3) is not zero, and the multiplicity of X' as a 
zero of D(\) is also k. 

Nowle tX!^X 2 ^ • • • ^X^-y denote the zeros of DÇK) each repeated 
a number of times equal to its index, and let ya=ya8i ($ = 1, • • ',n — r), 
be corresponding linearly independent real solutions of equations (2). 
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LEMMA 5. The solutions ya8 are such that B [y 8] ?^0, (s = l, • • -,w —r); 
moreover, these solutions may be so chosen that B [ys ; yt ] = 0 if s 9* t. 

The first part of the lemma follows readily from the hypothesis of 
the theorem, since A [ys] =\8B[y8], (s = l, • • • , n — r). If XS^X*, the 
second part of the lemma is true by Lemma 2. If Xs=Xf, the corre
sponding solutions may be so orthogonalized in view of the relation 

COROLLARY. The determinant | waKya8| is different from zero. 

LEMMA 6. If for a value s we have B [ys] > 0 , then for each t such that 
X*^XS we also have B[yt] > 0 . 

For suppose X*=XS and B[yt]<0. If c2= —B[yt]/B[ys], then by 
the above lemma we have (yat+cya^^ffia). Moreover, B[yt+cys] 
= B[yt]+c2B[y8]=0y A[yt+cys]^A[yt]+c2A[y8] =B[yt](\t-\s)^^ 
which is impossible in view of the hypothesis of the theorem. 

Now let A denote the interval of the X axis defined by X<Xi if 
BLyi ]>0 ,X>Xn-r i f5 [yn- r ]<0 , X , < X < X , + i i f ^ [ ^ ] < 0 , B[yg+1]>0. 
The interval A is uniquely determined in view of Lemma 6. We shall 
now show that A [x] — \0B[x] is a positive definite quadratic form 
for Xo on A. If (#a)^(0 a) , it follows from the corollary to Lemma 5 
that there are unique values (cK, ds)?£(0K, 0S) such that xa = uaKcK 

-\-yasds. Moreover, since uaKbap = 0, we have A\uK\ 3>5]=0, (K = 1, 
• • • , r; s = 1, • • • , n — r), and A[uK, uv]cKcv^0, with the inequality 

sign holding unless (cK) = (0K). Now if X0 is on the above defined inter
val A, each of the terms (Xs —X0)-B[^s] is positive. From the relations 

A [x] — X 0 £[#] = A [uK\ uv]cKcv + (A [ys; yt] — \oB[y9; yt])d8dt 

n—r 

= A [uK; uv]cKcv + ]T) (Xa - ^o)B[y8]d8
2 

s=l 

we therefore conclude that A [x] —\QB [X] is positive definite for X on 
A. In conclusion it is to be noted that if Xo is not on this interval, the 
form A [x]—\oB[x] is negative or zero for at least one of the sets 
(*«) = (?«•)> (5 = 1, • • • , n-r). 
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