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POLYGONAL VARIATIONS* 

ALINE H. FRINK AND ORRIN FRINK 

So-called direct methods in the calculus of variations, such as those 
of Tonelli involving lower semi-continuity, sometimes insure the ex
istence of an arc minimizing an integral J=ffdx in cases where many 
of the partial derivatives of the integrand function ƒ which occur 
in the usual theory do not exist. Examples are integrals of the form 
fg(x> y)(l+y'2)1/2dx, or in the parametric case fg(x, y){x'2+y,2)l,2dt, 
where g(x, y) is merely continuous and positive. When a minimizing 
arc is known to exist, necessary conditions assume greater impor
tance. I t seems desirable, therefore, to have methods of deriving the 
familiar necessary conditions of Weierstrass, Euler, and Legendre, 
while making as few assumptions as possible concerning the existence 
of partial derivatives of the integrand/. In this paper it is shown that 
by using the method of polygonal variations the Weierstrass neces
sary condition and a generalization of the Euler equation can be de
rived under the assumption of the existence and continuity of the 
partial derivative fV' only. A slightly generalized form of the Legendre 
condition can be proved, with the assumption only of the existence 
of the generalized second partial derivative fy>y>. The method in
volves giving the dependent variable or variables variations whose 
graphs are polygonal lines of proper shape, depending on a parameter 
e, and then evaluating the derivative / ' (e ) when e = 0. Since the 
method generalizes easily in the usual way to the case of more than 
one dependent variable and also to the parametric problem, the dis
cussion will be given here only for the simplest case of a non-para
metric problem with one dependent variable. 

1. The Weierstrass necessary condition. Some of the methods com
monly used to derive the Weierstrass necessary condition make use 
of such complicated notions as fields of extremals and Hubert 's in
variant integral, and most of them use the Euler equation, which 
involves the partial derivative fy. L. M. Graves however, has given 
a proof (American Mathematical Monthly, vol. 41 (1934), pp. 502-
504) which is independent of the Euler equation and requires only the 
existence and continuity of fy>. The following proof by means of polyg
onal variations is made under the same weak assumptions. 

In all that follows the integrand fix, y, yr) is assumed to be con-
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tinuous for x, y in a region R and for ail y', and admissible arcs are 
of class D'y lie in R, and pass through the fixed end points (a, c) and 
(b, d). Since polygonal variations have corners, their use requires the 
assumption that the integral is minimized with respect to a set of 
admissible arcs of class D'. In the classical proofs of the necessary 
conditions, the weaker assumption that comparison arcs are of class 
C' is all that is needed. This loss of generality could have been 
avoided by "rounding off the corners" of the polygonal variations. 
Since this procedure would make the proofs more complicated, and 
the variations would no longer be polygonal, it is not used here. 

THEOREM 1. If ƒ„/(#, y, y') exists and is continuous f or x, y in R and 
all y', and if y—y{x) makes the integral J — Jlf{x, y, y')dx a strong 
relative minimum in the class of admissible arcs, then at each element 
XiJiy' °f th>e minimizing arc and for all k, 

E{x, y, y', k) = f(x, y, k) - f(x, y, y') - {k - y')fy(x, y, / ) ^ 0. 

PROOF. The proof will be made first for the left-hand end point 
(a, c). For a given value of k, let m = k—yf{a). The polygonal varia
tion rj (x) to be used is linear from a to a + e with slope m, then linear 
from a + e to a + e + b with slope —me/b, and identically zero from 
a + e + b to b, (where b is to approach zero with e in the manner de
scribed below) that is, 

rj(x) — ni{% — a), a ^ x ^ a + e, 

(1) rj(x) = me(a + e + b — x)/b, a + e^x^a + e + b, 

rj(x) = 0, a + e + b^x^b. 

Since ƒ is continuous, there exists an co(e)>€>0 such that if 
| 3̂1 — 3>21 < \m\ e, then 

(2) | ƒ(*, yi, y') - M y*, y') I < «to 
for all x, y' on y=y(x)1 where co(e) approaches zero with e. Now let 
S = e/(co(e))1/2. Since co(e)>e and co(e)—-K), it is seen that b—>0 and 
e/b—>0. This completes the definition of rj(x). Since its slope does not 
approach zero with e, rj(x) is a strong variation. 

Now replace y and y' in J by y(x)+rj(x) and y'(x)+rj'(x), and call 
the result / ( e ) . Since y=y(x) makes / a strong relative minimum, 
and e is positive, 

(3) J'(0) = lim [7(e) - J(0)]/e ^ 0 
€->0 

provided the limit exists. Adding and subtracting an integral and 
integrating over subintervals, we have 
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/'(O) = lim I— f" '[ƒ(*, y + V,y' + „') - ƒ(*, y, y')]dx 
e->0 I. € «/ a 

•[ /• a + e + 5 

H — I [ƒ(*, y + ri,y' + v') - ƒ(», y + *?, ƒ)]<** 

(4) £ Jo+' 

H— I [ƒ(*, y +17, / ) - /O, y, /)]<** ? 

= Hm (/1 + /2 + /3) ^ 0. 
e->o 

The first law of the mean for integrals and the continuity of ƒ give 

(5) lim 7i = f [a, y (a), k] - f [a, y (a), y'(a)}. 
«->o 

Likewise the law of the mean for integrals and the mean value theo
rem for derivatives give 

8 
h = — [f (oc, y + ri9y' + y') - f (a, y + 77, y')\ 

(6) e 
= - *»ƒ„/(«, y + 97, F ' ) , 

where y, y , 77, 77' are evaluated at x = a, which is some point of the 
interval from a + e to a + e + ô, and where y'(a)^ Y' ?^y'(a)+y)'{a). 
Since Y'->y'(a), 

(7) lim 7 2 = - m/V[a, y (a), / ( a ) ] . 
e->0 

The law of the mean for integrals gives 

(8) h = - {ƒ[/3, yC8) + ,09), /OS)] - ƒ|)S, yC8), / ( / ? ) ]} , 
€ 

where a + efgjSfga + e + ô. Then from (2) and the definition of 5, 

(9) | / , | ^ - « ( * ) = («(«))»/*. 
€ 

Hence /3—>0; and combining (4), (5), and (7) we obtain 

lim /'(O) = / k y(a), É] - ƒ [a, y(a), / ( a ) ] 
(10) e-K) 

- W V k y (a), / ( a ) ] ^ 0. 

But since rn = k—y'(a), this is the Weierstrass E function, and the 
Weierstrass necessary condition has been shown to hold at the left-
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hand end point. Since y = y(x) also minimizes / on any subinterval, 
(10) also holds if a is replaced by any value of x between a and b, 
which proves Theorem 1. 

2. The Euler equation. The method of polygonal variations can be 
used to derive a generalization of the Euler equation which does not 
involve the partial derivative fv explicitly. However, the method will 
first be used to derive the ordinary form of the Euler equation, since 
the proof is very simple and avoids any use of either integration by 
parts, the fundamental lemma, or the du Bois-Reymond lemma. 

It is first assumed that fy and ƒ„/ exist and are continuous, and that 
y=y(x) makes / = ƒ«ƒ(#, y, yf)dx a weak relative minimum in the 
class of admissible arcs joining (a, c) and (b, d). For a fixed ô>0 , de
fine rj(x, 8) as follows: 

r)(x, 8) = (x — a)/8, a S oo ^ a + 8, 

(11) rj(x, 8) = 1, a + 8 ^ x S b - 8, 

r)(x, 8) = (b — x)/8, b — 8 S oc ^ b. 

Replace y and y' in J by y(x)+erj(x) and y'(x)+er)'(x), and call the 
result 1(e). The polygonal variation rj(x) is linear on the interval 
[a, a + d] with slope I/o, constant on the interval [a + ô, b — ô], and 
linear with slope —I/o on the interval [b — S, b]. Since y = y(x) makes 
J a weak relative minimum, it follows in the usual way that 

(12) /'(O) = f (rjfy + n'Mdx = 0 
•J a 

for all 8>0. Hence, by integrating over subintervals and taking the 
limit as S—»0, 

» 6 f /» a + ô /y ft /* b—8 

ƒ.6 f ç a+5 % _ a /» 6-5 

(vfy + y'fv^dx = lim < I fydx + I 1 • fydx 
a 5-»0 ' J a 8 J a+8 

rb b - x ra+8 ï rb ï i 
+ fydX+ —fy,dX + 0+ fy>dx\ = 0 . 

J b-i à J a 8 J 6-5 8 ) 
The first and third of these integrals approach the limit zero, as may 
be seen by using the law of the mean for integrals. Likewise the last 
two integrals approach the limits fv> (a) and —fy>(b), respectively. The 
limit of the second integral is seen to be fafydx. Hence 
(14) f fydx = fAQ-f A*). 

Since y=y(x) also minimizes J on any subinterval, (14) holds with b 
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replaced by any value of x from a to &, so that 

fydx = yVO) - f y (a). 
a 

But this is the Euler equation in integrated form. 

3. Partial variations and the generalized Euler equation. The par
tial derivative fy occurs in the Euler equation (14) in the integral 
fafydx. This integral can also be obtained in the following way. Give 
the dependent variable y the (non-admissible) polygonal variation 
rj(x) =e, a constant. Then r}'(x) = 0, and the integral J becomes 

J(e) = J ƒ[*> y(tf) + €> y'(x)]dx. 

Then, if fy exists and is continuous, J'(Q) = fafydx. Examples show 
that J'(0) may exist even if fy does not. This suggests the definition 

1 rh 

dJ = /'(O) = lim — I {f[x, y(x) + e, y'(x)] - f[x, y(x), y'(x)]}dx. 
e->0 € J a 

We shall call dJ the partial variation of J since only y and not y' is 
varied. The partial variation dJ is seen to be a generalization of the 
integral fafydx which occurs in the Euler equation. The variation 
rj(x)=e is not admissible since it does not vanish at the end points; 
hence dJ cannot be expected to vanish. We have rather the following 
theorem : 

THEOREM 2. Iff and fy> are continuous f or x, y in R and all y', and 
if y = y(x) makes J = f%f(%, y y yf)dx a weak relative minimum in the 
class of admissible functions, and dJ exists, then dJ=fy'(b) ~-fy>{a). 

PROOF. Given e, define the weak polygonal variation rj(x) as fol
lows: 

rj(x) = e(x — a)/ôt a ^ x ^ a + 8, 

(16) ri(x) = e, a + ô ^ x ^ b - Ô, 

rj(x) = e(b — x)/b, b — 8 ^ x ^ b. 

This variation rj(x) is linear from a to a + 8 with slope e/S which is 
to approach zero with e. From a + 8 to b — 8, rj(x) is constant, and 
from b — 8 to by rj(x) is linear with a slope which also approaches zero 
with e. As in the proof of Theorem 1, S is defined in terms of e as 
follows. From the continuity of/, there exists co(e) > | e| such that, if 
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(17) | ƒ(*, yh Y) - ƒ(*, y2, y') | < «(e) 

for x, y ' on y=y(x), where co(e)—>0 as e—>0. Now let ô = | e| /(o>(e))1/2. 
Note that as e—*0, S—->0, and e/S—>0, also that S is positive, while e 
may be positive or negative. 

Replace y and y' in / by ^(x) +)?(x) and 3>'(#) + rj'(x), and call the 
result / (e ) . Since y=y(x) makes J a weak relative minimum, it fol
lows that 

1 rb 

V = lim — I [f(x, y + y, y' + y') - f(x, y, y')]dx = 0 

provided the limit V exists, since the integral is non-negative for e 
sufficiently small, while e may be positive or negative. After adding 
and subtracting two quantities this becomes 

V = lim —< I [fix, y + ri,y' + V) - ƒ(*, y + V, y')]dx 
€->0 € I J a 

+ I [ƒ(*, y + y, y') - fix, y + e, y')]dx 
(18) 

+ J [ƒ(*, y + e> / ) - ƒ(*> y, y')]dx> 

l ( rb rb rb ) 
= lim— < I Fidx+ I F2dx+ I Fzdx\ = 0. 

Here i<\, F2, F$ have been introduced for convenience. By the law of 
the mean for integrals and the mean value theorem for derivatives, 

F1dx = tfA<x,y(a)+v(*),Y'], 
a 

w h e r e a ^ a ^ a + S a n d ^ a ) ^ Y'^yf(a)+rj\a). Since F'—»;y'(a), and 
fy' is continuous, 

1 /•a+5 

(20) lim — Fxdx = ƒ,- [a, y(a), y'(a) ] . 
€->0 e «/ a 

Similarly, 

(21) lim - f *!<** = - fy, [b, y{b), y'(b)}. 
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Since Fi vanishes from a + ô to b — S, 

> b 

»a+5 
F2dx ' (€) = ( „ ( € ) ) ^ . 

» a+5 
(25) l im— | F2dx = 0. 

(22) lim — f Fidx = ƒ,, [a, y (a), y\a)] - fw. [b, y(b), y'(b)]. 

Consider now JlF^dx. Since 117(x) — «| g | e| , by the definition of w(e), 

(23) I F21 = I ƒ(*, y + v, y') - fix, y + e, y') \ < «(e). 

Hence, by the law of the mean, 

I 1 C' 
(24) -

I € J a 

Therefore, since co(e)-^0, 

1 ra 

lim — 
ê O € J a 

Similarly, 

1 f& 

(26) l im— I F2dx = 0. 

Since F2 = 0 for a + ô ^ x ^ & - ô , (25) and (26) give 

1 f& 

(27) l im— I F2da = 0. 
e-*0 € J a 

From the definition of dJ, 

1 rb 

(28) l im— I Fzdx = dJ. 

Combining (22), (27), and (28) we have 

(29) V = ƒ„,[*, y(a), / ( * ) ] - A'[*, yW, / ( * ) ] + d/ = 0, 

which proves Theorem 2. Note that since y—y{x) also minimizes J 
over any subinterval, b in (29) can be replaced by any value of x be
tween a and b} provided that dJ is interpreted to mean the partial 
variation of J over the interval from a to x. 

4. The Legendre condition. The Legendre condition is usually de
rived either as a consequence of the Weierstrass condition or by use 
of the second variation. The objection to deriving it as a consequence 
of the Weierstrass condition is that the Legendre condition is neces
sary for a weak relative minimum while the Weierstrass condition is 
not. To derive the Legendre condition from the second variation re-
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quires the existence and continuity of numerous partial derivatives 
of/. Here a generalization of the Legendre condition is derived by the 
use of a weak polygonal variation, the proof requiring the existence 
only of the single generalized partial derivative fv>v>. 

THEOREM 3. Iff(x, y, y') is continuous, and if the arc y = y(x) makes 
J—Jafdx a> weak relative minimum in the set of arcs of class D' joining 
(a, c) and (b, d), and if 

L = lim — {f[x, y(x), y'(x) + m] - 2f[x, y(x), y'(x)} 
ro-H> M1 

+ f[x, y(x), y\x) - m\) 

exists, where x is any point of the interval [a, b], then L ^ 0 . 

The proof will be given first for the case where x is the left-hand 
end point a. The weak polygonal variation r](x) to be used is linear 
from a to a + e with slope m which is to approach zero. It is linear 
from a + e to a + 2e with slope —m, and identically zero from a + 2e 
to b; that is, 

r](x) = m(x — a) j a ^ x ^ a + e, 

(30) rj(x) — m(a + 2e — x), a + e^x^a + 2e, 

rj(x) = 0, a + 2e ^ x ^ b, 

where e is to be defined in terms of m as follows: From the continuity 
of/, y(x), and y'(x)> for every value of m there exists an e(m) > 0 
such that e ( w ) < | m | and such that if \x — a\ <2e and JS| <e, the 
following three inequalities hold: 

I ƒ[*, y(x) + à, y'(x) + w] - f[a, y(a), y'(a) + m] \ < w4, 

(31) | ƒ [x, y(x) + ö, y'(x) — m] — f[a, y(a), y'(a) — m]\ < mA
y 

I ƒ k yip), y'(a)] - f[x, y(*)> / (*)] I < ^4-

This completes the definition of rj(x). Since y = y(x) makes J a weak 
relative minimum, it follows that 

1 rb 

/,ON
 7 = lim —; I {/[*> y(x) + v(x), y'(x) + *n'(x)] 

(32) m->o em1 J a 

~~ f[%> y(x)> y'(%)\\dx è 0, 
provided the limit exists, since the integral is non-negative for m suffi
ciently small, and e > 0 . On the interval from a + 2e to b the integrand 
in (32) is zero; hence by integrating over subintervals and applying 
the law of the mean, we can write (32) as 
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/ ^ 7 = l i m ~* ti\-a> y(«) + 17(a), ƒ (a) + w] - / [a , y(a), / ( a ) j 
(33) ™->o ml 

+ ƒ fo yO) + 17G8), / ( £ ) - « ] - f\p, y(p), ƒ(£)]} , 

where a^a^a + e, and ö + e^ jö^a + 2e, and use has been made of 
the fact that rjf(a)==m and 7i'(J3) = —m from (30). 

After adding and subtracting a quantity, (33) becomes 

/ = lim — {/[a, y(a), / ( a ) + *»] - 2f[a, y (a), y\a)} 
m-*0 W 5 

(34) 

+ ƒ k ?(<*)> /(<0 - w]} + lim — {ƒ [a, ?(<*) + v(<x), ƒ (a) + w] 

- / [a , ?(<*), y'ip) + w] + ƒ k ^fa), /(<*)] - / [a , y(a), y (a)] 

+ ƒ fo y(P) + 17O), ƒ(£) - w] - ƒ [a, y(a), yf (a) - w] 

+ / k y W , y ( a ) ] - / L 8 , y ( i 8 ) , y ( i 8 ) ] } 
1 1 

= lim — Bx + lim — B2 ^ 0. 
w->0 W 2 ?/i-*0 W 2 

The two expressions in braces in (34) are here designated BX} B2. 
Now apply (31) to J52, replacing S by t\{a) and x by a in the first line 
of (31), replacing ô by rj (J3) and x by j8 in the second line of (31), and 
then replacing x first by a and then by j3 in the third line of (31). Then 

(35) \B2\ < 4 m 4 , 

since I rç(ff) <efor \m\ < 1 from (30). Hence 

(36) 

Therefore, 

(37) 

from (34) 

lim — B2 = 0. 

and the definition of L, 

1 
Z, = lim — Bx 

ro-H) W2 

è o , 

which proves Theorem 3 when x is the left-hand end point a. Since 
y — yipc) minimizes J on any subinterval, the same conclusion holds 
when a is replaced by any value of x between a and b. It is well known 
that if the ordinary second partial derivative ƒ„/„/ exists, it is equal 
to L; but L may exist even when the first partial derivative ƒy* does 
not. Hence Theorem 3 is a generalization of Legendre's condition. 
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