DIVISIBILITY OF GENERALIZED FACTORIALS*

BENJAMIN ROSENBAUM

1. Introduction. Two different types of expression were obtained by A. M. Legendre[†] for H, the index of the highest power of the prime p dividing n!:

(1)
$$H = \left[\frac{n}{p}\right] + \left[\frac{n}{p^2}\right] + \left[\frac{n}{p^3}\right] + \cdots,$$

$$(2) H = \frac{n-s}{p-1},$$

where [a/b] denotes the largest integer less than or equal to a/b, and s is the sum of the digits of n to the base p. R. D. Carmichael‡ considered the more general problem of determining H for $\prod_{x=0}^{n-1} (xa+c)$, where a and c are relatively prime positive integers and $a \neq 0 \pmod{p}$. He obtained expressions of type (1) and upper and lower bounds for H. In the present paper a correction is made in the upper bound, new expressions for H of types (1) and (2) are derived, and the results are extended to products where a and c are any positive integers.

2. Discussion of previous results. Carmichael used the following method: Set $c_0 = c$, and let i_r be the smallest value of $x \ge 0$ such that $xa + c_{r-1} \equiv 0 \pmod{p}$, the quotient being c_r . Then $i_r \le p-1$. Let $e_0 = n-1$, $e_r = \left[(e_{r-1}-i_r)/p\right]$, (r>0). If $\prod_{x=0}^{n-1}(xa+c_0)$ is divisible by p, it has e_1+1 factors of the form $(mp+i_1)a+c_0$, $(0 \le m \le \left[(e_0-i_1)/p\right])$, each divisible by p. The product of the quotients is $\prod_{x=0}^{e_1}(xa+c_1)$. If this product is divisible by p, it has e_2+1 factors of the form $(mp+i_2)a+c_1$, $(0 \le m \le \left[(e_1-i_2)/p\right])$, each divisible by p. Hence e_2+1 factors of $\prod_{x=0}^{n-1}(xa+c_0)$ are divisible by p^2 . If the product of the quotients $\prod_{x=0}^{e_2}(xa+c_2)$ is divisible by p, e_3+1 factors of $\prod_{x=0}^{n-1}(xa+c_0)$ are divisible by p. Then e_t+1 factors of the original product are divisible by p^t and no factors by p^{t+1} . Hence

(3)
$$H = \sum_{r=1}^{t} (e_r + 1).$$

^{*} Presented to the Society, April 10, 1936. By a generalized factorial we mean a product of integers forming an arithmetic progression.

[†] Théorie des Nombres, 2d edition, 1808, p. 8.

[‡] This Bulletin, vol. 15 (1908–1909), pp. 217–221.

For certain values of a, c_0 , and p, one has $c_0 = c_1 = \cdots = c$ and $i_1 = i_2 = \cdots = i$. In that case

$$H = \left[\frac{n-1-i+p}{p}\right] + \left[\frac{n-1-i-ip+p^2}{p^2}\right] + \left[\frac{n-1-i-ip+p^2}{p^2}\right]$$
$$+ \left[\frac{n-1-i-ip-ip^2+p^3}{p^3}\right] + \cdots$$

In the case of $1 \cdot 3 \cdot 5 \cdot \cdots \cdot (2n-1)$, i = (p-1)/2 for $p \neq 2$ and

(4)
$$H = \left[\frac{2n-1+p}{2p}\right] + \left[\frac{2n-1+p^{2}}{2p^{2}}\right] + \left[\frac{2n-1+p^{3}}{2p^{3}}\right] + \cdots$$

Carmichael also obtained the expression

$$\frac{n-s}{p-1} \le H \le h + \frac{n-s}{p-1}$$

when *n* is not a power of *p*, and H = (n-1)/(p-1) when *n* is a power of *p*, where *s* is the sum of the digits of *n* to the base *p* and *h* is the index of the highest power of $p \le n$. The following examples show that these expressions are incorrect: When a=5, $c_0=6$, n=3, and p=2, one has H=5 while h+(n-s)/(p-1)=2. When a=2, $c_0=21$, n=4, and p=3, one has H=4 while h+(n-s)/(p-1)=2. When a=5, $c_0=1$, n=4, and p=2, one has H=5 while (n-1)/(p-1)=3. It will be shown in §8 that the error in the first expression lies in the term *h*. The second expression was derived from a source containing a similar error. The use of (12) in the above examples gives upper bounds for *H* of 5, 4, and 5, respectively.

I. Schur* obtained a result equivalent to (4) by the use of a different method. He found $H = \sum_{r=1}^{\infty} [n/p^r + 1/2]$.

E. Stridsberg, \dagger considering the same problem as Carmichael, obtained very complicated expressions for H.

3. Some relations between the letters *c*. We shall make use of the following theorem and corollaries:

1938]

^{*} Sitzungsberichte der Preussischen Akademie der Wissenschaften, Physikalisch-Mathematische Klasse, 1929, p. 372.

[†] Arkiv för Matematik, Astronomi och Fysik, vol. 6 (1911), no. 34; summary in Dickson, *History of the Theory of Numbers*, vol. 1, p. 264.

THEOREM. If c_r and c_s are any two of the letters c, with s > r, then c_s is the least integer satisfying the conditions: (1) $c_s p^{s-r} \equiv c_r \pmod{a}$, (2) $c_s p^{s-r} \ge c_r$.

PROOF. The theorem is true for c_{r+1} , since i_{r+1} is the least non-negative integer such that $i_{r+1}a + c_r \equiv 0 \pmod{p}$, the quotient being c_{r+1} . Proceed by induction, assuming that c_v is the least integer such that $c_v p^{v-r} \ge c_r$ and $c_v p^{v-r} \equiv c_r \pmod{a}$. Now $i_{v+1}a + c_v = c_{v+1}p$. Hence c_{v+1} is the least integer such that $c_{v+1}p^{v+1-r} \ge c_v p^{v-r}$ and $c_{v+1}p^{v+1-r} \equiv c_v p^{v-r} \pmod{a}$. It follows from the properties of c_v that c_{v+1} is the least integer such that $c_{v+1}p^{v+1-r} \ge c_r$ and $c_{v+1}p^{v+1-r} \equiv c_r \pmod{a}$. The theorem is therefore true for c_{v+1} and consequently for c_s .

COROLLARY 1. If ϵ is the least positive integer such that $p^{\epsilon} \equiv 1 \pmod{a}$ and s > r, then $c_s = ma + residue$ of $c_r p^{k \epsilon + r - s} \pmod{a}$, where k is any integer such that $k\epsilon + r - s \ge 0$ and m is the least non-negative integer such that $ma + residue c_r p^{k \epsilon + r - s} \ge c_r p^{r - s}$. When $c_r < a, m = 0$.

PROOF. The first part of the corollary follows from the theorem, which may be restated in the form: c_s is the least integer greater than or equal to $c_r p^{r-s}$ and congruent to $c_r p^{k \epsilon + r-s}$ modulo a.

To prove the second part of the corollary we make use of the congruence $xp^{s-r} \equiv c_r \pmod{a}$, which has a unique solution $0 \leq x_1 < a$. When $c_r < a$, $x_1p^{s-r} \geq c_r$, otherwise the positive integer $c_r - x_1p^{s-r}$ is less than a and is congruent to zero modulo a. By the theorem, $x_1 = c_s$. Therefore $c_s < a$ and m = 0.

When p is large, the above corollary gives a method for calculating the letters c which is more rapid than that based on the initial determination of i_s as the least non-negative integer such that $i_s a + c_{s-1} \equiv 0$ (mod p). This is especially true when $c_0 < a$.

EXAMPLE. When $c_0 = 29$, a = 7, and p = 11, $\epsilon = 3$. Then $c_1 = 7m$ + residue $(29)(11)^{3+0-1} \pmod{7} = 7m$ + residue $(1)(4)^2 = 7m + 2 = 9$, $(2 < c_0 p^{-1} = 29/11 < 9)$, and $c_2 = 7m$ + residue $(9)(11)^2 = 7m + 4 = 4$.

COROLLARY 2. Necessary and sufficient conditions that $c_r = c_s$ are (1) $c_r \leq a$, (2) $p^{s-r} \equiv 1 \pmod{a}$.

PROOF. Since c_s is the least integer satisfying the conditions of the theorem, $c_s p^{s-r} = c_r + ja$, where $j \leq p^{s-r} - 1$. If $c_r > a$, then $c_s p^{s-r} < c_r + c_r(p^{s-r}-1) = c_r p^{s-r}$, and $c_s < c_r$. Since $c_s p^{s-r} \equiv c_r \pmod{a}$ and c_0 is relatively prime to a, so are all the letters c. Therefore when $c_r = c_s$, we have $p^{s-r} \equiv 1 \pmod{a}$, and the conditions are necessary.

By Corollary 1, when $c_r < a$, $c_s = \text{residue } c_r p^{k \cdot \epsilon + r - s} \pmod{a}$. If, in addition, $p^{s-r} \equiv 1 \pmod{a}$, then $c_s = \text{residue } c_r \pmod{a} = c_r$. When $c_r = a$, we have a = 1 and $c_s = ma = 1$. Hence the conditions are sufficient.

4. Expression for *H* involving the letters *i*. Since $\prod_{x=0}^{e_t} (xa+c_t) \neq 0$ (mod p), and $i_{t+1}a+c_t=c_{t+1}p$, it follows that $i_{t+1} > e_t$. Also $i_{t+1} \leq p-1$. Hence $-1 < (e_t-i_{t+1})/p < 0$ and

$$e_{t+1} = \left[\frac{e_t - i_{t+1}}{p}\right] = -1.$$

By induction, when r > t,

$$e_r = \left[\frac{e_{r-1} - i_r}{p}\right] = -1.$$

Thus (3) is equivalent to

(5)
$$H = \sum_{r=1}^{\infty} (e_r + 1).$$

Using the values of e_r in §2, substituting that of e_0 in e_1 , the resulting value of e_1 in e_2 , \cdots , we obtain from (5)

(6)
$$H = \left[\frac{n-1-i_1+p}{p}\right] + \left[\frac{n-1-i_1-i_2p+p^2}{p^2}\right] + \left[\frac{n-1-i_1-i_2p+p^2}{p^3}\right] + \cdots$$

5. Expression for *H* involving the letters *c*. Consider $i_r a + c_{r-1} = c_r p$. Solving for i_r and substituting in (6) we obtain

(7)
$$H = \left[\frac{l}{ap} + \frac{a - c_1}{a}\right] + \left[\frac{l}{ap^2} + \frac{a - c_2}{a}\right] + \left[\frac{l}{ap^3} + \frac{a - c_3}{a}\right] + \cdots$$

where $l=a(n-1)+c_0$ is the last factor of the product $\prod_{x=0}^{n-1}(xa+c_0)$.

Since $e_r+1 \ge 1$ for $r \le t$ and $e_r+1=0$ for r > t, all terms of (5), (6), and (7) are zero after the first zero term.

When a = 1 or 2 and $a \not\equiv 0 \pmod{p}$, we have $p \equiv 1 \pmod{a}$. By Corollary 2, when $c_0 \leq a$, $c_0 = c_1 = \cdots = c$ and (7) give (1) or (4).

When a=3, 4, or 6 and $a \not\equiv 0 \pmod{p}$, we have $p \equiv 1$ or $p \equiv -1 \pmod{p}$. (mod a). When $c_0 < a$ and $p \equiv 1$, $c_0 = c_1 = \cdots = c$. When $c_0 < a$ and $p \equiv -1$, since $p^2 \equiv 1 \pmod{a}$, $c_0 = c_2 = c_4 = \cdots$. By Corollary 1, $c_1 = \text{residue of } c_0 p \pmod{a}$. Hence $c_1 \equiv -c_0 \equiv a - c_0 \pmod{a}$, and $c_1 \equiv a - c_0 \equiv c_3 \equiv c_5 \equiv \cdots$.

,

6. Expression for H involving digits of n to base p. Let $n = d_h p^h$ $+d_{h-1}p^{h-1}+\cdots+d_1p+d_0$, and let $s=d_0+d_1+\cdots+d_h$, with $0 \leq d_r$ $\leq p-1$. On substituting the above value of *n* in (6) we obtain

$$H = \sum_{r=1}^{\infty} \left[\frac{d_h p^h + d_{h-1} p^{h-1} + \dots + d_r p^r}{p^r} + \frac{p^r + d_{r-1} p^{r-1} + \dots + d_1 p + d_0 - i_r p^{r-1} - \dots - i_2 p - i_1 - 1}{p^r} \right].$$

We shall designate the second term in the brackets by F_r . When $d_{r-1}p^{r-1} + d_{r-2}p^{r-2} + \cdots + d_0 \ge i_r p^{r-1} + i_{r-1}p^{r-2} + \cdots + i_1 + 1$, we obtain $1 \leq F_r < 2$. Since each d and each i is less than or equal to p-1, this will occur when and only when $d_{r-1} > i_r$, or

(8)
$$d_{r-1} = i_r$$
 and $d_{r-1-b} > i_{r-b}$

where $r-1-b \ge 0$ and d_{r-1-b} is the first *d* of lower subscript than d_{r-1} which is not equal to the corresponding i. (The letter i_r corresponds to d_{r-1} . Though $d_{h+u}=0$ when $u \ge 1$, it is possible to have the corresponding letter i = 0 and $F_{h+v} \ge 1$, $v \ge 1$.) When $d_{r-1}p^{r-1} + d_{r-2}p^{r-2}$ $+ \cdots + d_0 < i_r p^{r-1} + i_{r-1} p^{r-2} + \cdots + i_1 + 1$, we have $0 \leq F_r < 1$. From the above it follows that $H = \sum_{r=1}^{\infty} \left[n/p^r \right] + \sum_{r=1}^{\infty} \left[F_r \right]$ and finally that

(9)
$$H = \frac{n-s}{p-1} + g,$$

where g is the number of values of $r \ge 1$ for which $d_{r-1} \ge i_r$, the equality sign being used only when the conditions of (8) are fulfilled.

In the case of n!, i = p-1. Hence g = 0 and H = (n-s)/(p-1).

In the case of $1 \cdot 3 \cdot 5 \cdot \cdots \cdot (2n-1)$, i = (p-1)/2 and g is the number of values of $r \ge 0$ for which $d_r \ge (p-1)/2$, with the restriction on the equality sign.

EXAMPLE. This example illustrates the use of (9). Consider the product (22)(27)(32)(37)(42) with p=3. From $i_ra+c_{r-1}=c_rp$ we obtain $i_1 = 1$, $i_2 = 0$, $i_3 = 0$, $i_4 = 1$; and n = 5 = (1)(3) + (2). Hence $d_0 = 2$, $d_1 = 1$; $d_r = 0$, r > 1. Since $d_0 > i_1$, $d_1 > i_2$, $d_2 = i_3$, and $d_4 < i_4$, we have g = 3. H = (5-3)/2 + 3 = 4.

7. Expression for H involving digits of $l = a(n-1) + c_0$ to base p. Let $l = \delta_{\lambda} p^{\lambda} + \delta_{\lambda-1} p^{\lambda-1} + \cdots + \delta_0$ and $\sigma = \delta_0 + \delta_1 + \cdots + \delta_{\lambda}$, with $0 \leq \delta_r \leq p-1$. Since $l \leq p^{\lambda+1}-1$ and $c_r \geq 1$, all terms of (7) beyond $[l/ap^{\lambda}+(a-c_{\lambda})/a]$ are zero. Hence

570

$$H = \sum_{r=1}^{\lambda} \left[\frac{a(n-1) + c_0 + p^r(a-c_r)}{ap^r} \right]$$
$$= \sum_{r=1}^{\lambda} \left[\frac{N_r}{ap^r} + \frac{D_{r-1} + ap^r - R_{r-1}p^r}{ap^r} \right],$$

where $D_{r-1} = \delta_{r-1}p^{r-1} + \delta_{r-2}p^{r-2} + \cdots + \delta_0$. Here R_{r-1} is the residue $(\geq 1 \text{ and } \leq a)$ of $p^{k\epsilon-r}D_{r-1} \pmod{a}$, ϵ is the least positive exponent such that $p^{\epsilon} \equiv 1 \pmod{a}$, k is an integer such that $k\epsilon - r \geq 0$, and $N_r = a(n-1) + c_0 - c_r p^r - D_{r-1} + R_{r-1}p^r$. By observing that $a(n-1) + c_0 - D_{r-1} = \delta_\lambda p^\lambda + \cdots + \delta_r p^r$, $c_r p^r - c_0 \equiv 0 \pmod{a}$ (see the theorem of §3), and $R_{r-1}p^r - D_{r-1} \equiv p^{k\epsilon-r}D_{r-1}p^r - D_{r-1} \equiv 0 \pmod{a}$, we see that $N_r \equiv 0 \pmod{ap^r}$.

Also because $D_{r-1} \leq p^r - 1$ and $1 \leq R_{r-1} \leq a$, we see that

$$0 \leq \frac{D_{r-1} + ap^r - R_{r-1}p^r}{ap^r} < 1.$$

Therefore

$$\begin{split} H &= \sum_{r=1}^{\lambda} \frac{N_r}{ap^r} \\ &= \sum_{r=1}^{\lambda} \left(\frac{\delta_{\lambda} p^{\lambda-r} + \delta_{\lambda-1} p^{\lambda-1-r} + \dots + \delta_{r+1} p + \delta_r}{a} + \frac{R_{r-1} - c_r}{a} \right) \\ &= \sum_{r=1}^{\lambda} \left(\frac{\delta_r (p^{r-1} + p^{r-2} + \dots + 1)}{a} + \frac{R_{r-1} - c_r}{a} \right) \\ &= \sum_{r=1}^{\lambda} \left(\frac{\delta_r (p^r - 1)}{a(p-1)} + \frac{R_{r-1} - c_r}{a} \right), \end{split}$$

and finally

(10)
$$H = \frac{l - \sigma}{a(p - 1)} + \sum_{r=1}^{\lambda} \frac{R_{r-1} - c_r}{a} \cdot$$

In the case of *n*!, we have $a=1, c=1, \epsilon=1, R_{r-1}=1$, and $\sum_{r=1}^{\lambda} (R_{r-1}-c_r)/a=0$. Therefore H=(n-s)/(p-1).

In the case of $1 \cdot 3 \cdot 5 \cdot \cdots \cdot (2n-1)$, we have a = 2, c = 1, and $\epsilon = 1$. Then $R_{r-1}=1$ when D_{r-1} is odd; $R_{r-1}=2$ when D_{r-1} is even. Hence $H = (2n - \sigma - 1)/2(p-1) + e/2$, where e is the number of values of r, $(1 \le r \le \lambda)$, for which D_{r-1} is even. When $l = p^{\lambda}$, $\sigma = 1$ and $e = \lambda$. Therefore $H = (n-1)/(p-1) + \lambda/2$.

EXAMPLE. This example illustrates the use of (10). Determine H

1938]

[August

for (22)(27)(32)(37)(42) with p=3. We obtain $\epsilon=4$, $l=42=(1)(3)^3$ + $(1)(3)^2+(2)(3)+0$; $D_0=0$, $D_1=6$, $D_2=15$; $R_0=5$, $R_1=$ residue $(3)^{4-2}(6) \pmod{5}=4$, $R_2=5$. From $i_ra+c_{r-1}=c_rp$, we obtain $c_1=9$, $c_2=3$, and $c_3=1$. Then H=(42-4)/(5)(2)+(14-13)/5=4.

8. Upper and lower bounds of H. The terms of (5) and (6) vanish after the *t*th term, where *t* has the same meaning as in (3). We have $0 \le i_r \le p-1$. Substituting the limiting values of i_r in (6) we obtain

(11)
$$\begin{bmatrix} \frac{n}{p} \end{bmatrix} + \begin{bmatrix} \frac{n}{p^2} \end{bmatrix} + \cdots$$
$$\leq H \leq \begin{bmatrix} \frac{n-1}{p} \end{bmatrix} + \begin{bmatrix} \frac{n-1}{p^2} \end{bmatrix} + \cdots + t.$$

It is evident from §2 that t is the index of the highest power of p dividing any one factor of $\prod_{x=0}^{n-1}(xa+c_0)$. Hence $t \leq \lambda$, the index of the highest power of $p \leq l=a(n-1)+c_0$. However t may exceed h, the index of the highest power of $p \leq n$. If α is the index of the highest power of p = n. If α is the index of the highest power of p = n, and β is any integer ≥ 0 , then $[n/p^{\beta}] = [(n-1)/p^{\beta}]+1$ for $\beta \leq \alpha$, and $[n/p^{\beta}] = [(n-1)/p^{\beta}]$ for $\beta > \alpha$. Substituting these results in (11), we have

$$\left[\frac{n}{p}\right] + \left[\frac{n}{p^2}\right] + \cdots \leq H \leq \left[\frac{n}{p}\right] + \left[\frac{n}{p^2}\right] + \cdots + \lambda - \alpha,$$

or

(12)
$$\frac{n-s}{p-1} \leq H \leq \frac{n-s}{p-1} + \lambda - \alpha.$$

9. Values of H when a and c_0 are any positive integers. If a and c_0 are not relatively prime let d be their greatest common divisor, with a = a'd and $c_0 = c'd$. Then $\prod_{x=0}^{n-1} (xa+c_0) = d^n \prod_{x=0}^{n-1} (xa'+c')$. If H, H', and h_d are the indices of the highest powers of p dividing $\prod_{x=0}^{n-1} (xa+c_0)$, $\prod_{x=0}^{n-1} (xa'+c')$, and d, respectively, then $H = H' + nh_d$.

When a and c_0 are relatively prime and $a \equiv 0 \pmod{p}$, $xa + c_0$ is not divisible by p and H = 0.

YALE UNIVERSITY