DIVISIBILITY OF GENERALIZED FACTORIALS*

BENJAMIN ROSENBAUM

1. Introduction. Two different types of expression were obtained by A. M. Legendre \dagger for H, the index of the highest power of the prime p dividing n !:

$$
\begin{align*}
H & =\left[\frac{n}{p}\right]+\left[\frac{n}{p^{2}}\right]+\left[\frac{n}{p^{3}}\right]+\cdots \tag{1}\\
H & =\frac{n-s}{p-1} \tag{2}
\end{align*}
$$

where $[a / b]$ denotes the largest integer less than or equal to a / b, and s is the sum of the digits of n to the base p. R. D. Carmichael \ddagger considered the more general problem of determining H for $\prod_{x=0}^{n-1}(x a+c)$, where a and c are relatively prime positive integers and $a \neq 0(\bmod p)$. He obtained expressions of type (1) and upper and lower bounds for H. In the present paper a correction is made in the upper bound, new expressions for H of types (1) and (2) are derived, and the results are extended to products where a and c are any positive integers.
2. Discussion of previous results. Carmichael used the following method: Set $c_{0}=c$, and let i_{r} be the smallest value of $x \geqq 0$ such that $x a+c_{r-1} \equiv 0(\bmod p)$, the quotient being c_{r}. Then $i_{r} \leqq p-1$. Let $e_{0}=n-1, e_{r}=\left[\left(e_{r-1}-i_{r}\right) / p\right],(r>0)$. If $\prod_{x=0}^{n-1}\left(x a+c_{0}\right)$ is divisible by p, it has $e_{1}+1$ factors of the form $\left(m p+i_{1}\right) a+c_{0},\left(0 \leqq m \leqq\left[\left(e_{0}-i_{1}\right) / p\right]\right)$, each divisible by p. The product of the quotients is $\prod_{x=0}^{e_{1}}\left(x a+c_{1}\right)$. If this product is divisible by p, it has $e_{2}+1$ factors of the form $\left(m p+i_{2}\right) a+c_{1},\left(0 \leqq m \leqq\left[\left(e_{1}-i_{2}\right) / p\right]\right)$, each divisible by p. Hence $e_{2}+1$ factors of $\prod_{x=0}^{n-1}\left(x a+c_{0}\right)$ are divisible by p^{2}. If the product of the quotients $\prod_{x=0}^{e_{2}^{2}}\left(x a+c_{2}\right)$ is divisible by $p, e_{3}+1$ factors of $\prod_{x=0}^{n-1}\left(x a+c_{0}\right)$ are divisible by p^{3}. Continue in this manner until a product $\prod_{x=0}^{e_{t}}\left(x a+c_{t}\right)$ is obtained which is not divisible by p. Then $e_{t}+1$ factors of the original product are divisible by p^{t} and no factors by p^{t+1}. Hence

$$
\begin{equation*}
H=\sum_{r=1}^{t}\left(e_{r}+1\right) \tag{3}
\end{equation*}
$$

[^0]For certain values of a, c_{0}, and p, one has $c_{0}=c_{1}=\cdots=c$ and $i_{1}=i_{2}=\cdots=i$. In that case

$$
\begin{aligned}
H= & {\left[\frac{n-1-i+p}{p}\right]+\left[\frac{n-1-i-i p+p^{2}}{p^{2}}\right] } \\
& +\left[\frac{n-1-i-i p-i p^{2}+p^{3}}{p^{3}}\right]+\cdots .
\end{aligned}
$$

In the case of $1 \cdot 3 \cdot 5 \cdots(2 n-1), i=(p-1) / 2$ for $p \neq 2$ and

$$
\begin{align*}
H=\left[\frac{2 n-1+p}{2 p}\right] & +\left[\frac{2 n-1+p^{2}}{2 p^{2}}\right] \tag{4}\\
& +\left[\frac{2 n-1+p^{3}}{2 p^{3}}\right]+\cdots
\end{align*}
$$

Carmichael also obtained the expression

$$
\frac{n-s}{p-1} \leqq H \leqq h+\frac{n-s}{p-1}
$$

when n is not a power of p, and $H=(n-1) /(p-1)$ when n is a power of p, where s is the sum of the digits of n to the base p and h is the index of the highest power of $p \leqq n$. The following examples show that these expressions are incorrect: When $a=5, c_{0}=6, n=3$, and $p=2$, one has $H=5$ while $h+(n-s) /(p-1)=2$. When $a=2, c_{0}=21, n=4$, and $p=3$, one has $H=4$ while $h+(n-s) /(p-1)=2$. When $a=5$, $c_{0}=1, n=4$, and $p=2$, one has $H=5$ while $(n-1) /(p-1)=3$. It will be shown in $\S 8$ that the error in the first expression lies in the term h. The second expression was derived from a source containing a similar error. The use of (12) in the above examples gives upper bounds for H of 5, 4, and 5, respectively.
I. Schur* obtained a result equivalent to (4) by the use of a different method. He found $H=\sum_{r=1}^{\infty}\left[n / p^{r}+1 / 2\right]$.
E. Stridsberg, \dagger considering the same problem as Carmichael, obtained very complicated expressions for H.
3. Some relations between the letters c. We shall make use of the following theorem and corollaries:

[^1]Theorem. If c_{r} and c_{s} are any two of the letters c, with $s>r$, then c_{s} is the least integer satisfying the conditions: (1) $c_{s} p^{s-r} \equiv c_{r}(\bmod a)$, (2) $c_{s} p^{s-r} \geqq c_{r}$.

Proof. The theorem is true for c_{r+1}, since i_{r+1} is the least non-negative integer such that $i_{r+1} a+c_{r} \equiv 0(\bmod p)$, the quotient being c_{r+1}. Proceed by induction, assuming that c_{v} is the least integer such that $c_{v} p^{v-r} \geqq c_{r}$ and $c_{v} p^{v-r} \equiv c_{r}(\bmod a)$. Now $i_{v+1} a+c_{v}=c_{v+1} p$. Hence c_{v+1} is the least integer such that $c_{v+1} p^{v+1-r} \geqq c_{v} p^{v-r}$ and $c_{v+1} p^{v+1-r} \equiv c_{v} p^{v-r}$ $(\bmod a)$. It follows from the properties of c_{v} that c_{v+1} is the least integer such that $c_{v+1} p^{v+1-r} \geqq c_{r}$ and $c_{v+1} p^{v+1-r} \equiv c_{r}(\bmod a)$. The theorem is therefore true for c_{v+1} and consequently for c_{s}.

Corollary 1. If ϵ is the least positive integer such that $p^{\epsilon} \equiv 1(\bmod a)$ and $s>r$, then $c_{s}=m a+$ residue of $c_{r} p^{k \epsilon+r-s}(\bmod a)$, where k is any integer such that $k \epsilon+r-s \geqq 0$ and m is the least non-negative integer such that $m a+$ residue $c_{r} p^{k \epsilon+r-s} \geqq c_{r} p^{r-s}$. When $c_{r}<a, m=0$.

Proof. The first part of the corollary follows from the theorem, which may be restated in the form: c_{s} is the least integer greater than or equal to $c_{r} p^{r-s}$ and congruent to $c_{r} p^{k \epsilon+r-s}$ modulo a.

To prove the second part of the corollary we make use of the congruence $x p^{s-r} \equiv c_{r}(\bmod a)$, which has a unique solution $0 \leqq x_{1}<a$. When $c_{r}<a, x_{1} p^{s-r} \geqq c_{r}$, otherwise the positive integer $c_{r}-x_{1} p^{s-r}$ is less than a and is congruent to zero modulo a. By the theorem, $x_{1}=c_{s}$. Therefore $c_{s}<a$ and $m=0$.

When p is large, the above corollary gives a method for calculating the letters c which is more rapid than that based on the initial determination of i_{s} as the least non-negative integer such that $i_{s} a+c_{s-1} \equiv 0$ $(\bmod p)$. This is especially true when $c_{0}<a$.

Example. When $c_{0}=29, a=7$, and $p=11, \epsilon=3$. Then $c_{1}=7 m$ + residue $(29)(11)^{3+0-1}(\bmod 7)=7 m+$ residue $(1)(4)^{2}=7 m+2=9$, $\left(2<c_{0} p^{-1}=29 / 11<9\right)$, and $c_{2}=7 m+$ residue $(9)(11)^{2}=7 m+4=4$.

Corollary 2. Necessary and sufficient conditions that $c_{s}=c_{s}$ are (1) $c_{r} \leqq a$, (2) $p^{s-r} \equiv 1(\bmod a)$.

Proof. Since c_{s} is the least integer satisfying the conditions of the theorem, $c_{s} p^{s-r}=c_{r}+j a$, where $j \leqq p^{s-r}-1$. If $c_{r}>a$, then $c_{s} p^{s-r}$ $<c_{r}+c_{r}\left(p^{s-r}-1\right)=c_{r} p^{s-r}$, and $c_{s}<c_{r}$. Since $c_{s} p^{s-r} \equiv c_{r}(\bmod a)$ and c_{0} is relatively prime to a, so are all the letters c. Therefore when $c_{r}=c_{s}$, we have $p^{s-r} \equiv 1(\bmod a)$, and the conditions are necessary.

By Corollary 1, when $c_{r}<a, c_{s}=$ residue $c_{r} p^{k \epsilon+r-s}(\bmod a)$. If, in addition, $p^{s-r} \equiv 1(\bmod a)$, then $c_{s}=$ residue $c_{r}(\bmod a)=c_{r}$. When $c_{r}=a$, we have $a=1$ and $c_{s}=m a=1$. Hence the conditions are sufficient.
4. Expression for H involving the letters i. Since $\prod_{x=0}^{e_{t}}\left(x a+c_{t}\right) \not \equiv 0$ $(\bmod p)$, and $i_{t+1} a+c_{t}=c_{t+1} p$, it follows that $i_{t+1}>e_{t}$. Also $i_{t+1} \leqq p-1$. Hence $-1<\left(e_{t}-i_{t+1}\right) / p<0$ and

$$
e_{t+1}=\left[\frac{e_{t}-i_{t+1}}{p}\right]=-1
$$

By induction, when $r>t$,

$$
e_{r}=\left[\frac{e_{r-1}-i_{r}}{p}\right]=-1
$$

Thus (3) is equivalent to

$$
\begin{equation*}
H=\sum_{r=1}^{\infty}\left(e_{r}+1\right) \tag{5}
\end{equation*}
$$

Using the values of e_{r} in $\S 2$, substituting that of e_{0} in e_{1}, the resulting value of e_{1} in e_{2}, \cdots, we obtain from (5)

$$
\begin{align*}
H= & {\left[\frac{n-1-i_{1}+p}{p}\right]+\left[\frac{n-1-i_{1}-i_{2} p+p^{2}}{p^{2}}\right] } \tag{6}\\
& +\left[\frac{n-1-i_{1}-i_{2} p-i_{3} p^{2}+p^{3}}{p^{3}}\right]+\cdots
\end{align*}
$$

5. Expression for H involving the letters c. Consider $i_{r} a+c_{r-1}=c_{r} p$. Solving for i_{r} and substituting in (6) we obtain

$$
\begin{align*}
H=\left[\frac{l}{a p}+\frac{a-c_{1}}{a}\right] & +\left[\frac{l}{a p^{2}}+\frac{a-c_{2}}{a}\right] \\
& +\left[\frac{l}{a p^{3}}+\frac{a-c_{3}}{a}\right]+\cdots, \tag{7}
\end{align*}
$$

where $l=a(n-1)+c_{0}$ is the last factor of the product $\prod_{x=0}^{n-1}\left(x a+c_{0}\right)$.
Since $e_{r}+1 \geqq 1$ for $r \leqq t$ and $e_{r}+1=0$ for $r>t$, all terms of (5), (6), and (7) are zero after the first zero term.

When $a=1$ or 2 and $a \neq 0(\bmod p)$, we have $p \equiv 1(\bmod a)$. By Corollary 2 , when $c_{0} \leqq a, c_{0}=c_{1}=\cdots=c$ and (7) give (1) or (4).

When $a=3,4$, or 6 and $a \neq 0(\bmod p)$, we have $p \equiv 1$ or $p \equiv-1$ $(\bmod a)$. When $c_{0}<a$ and $p \equiv 1, c_{0}=c_{1}=\cdots=c$. When $c_{0}<a$ and $p \equiv-1$, since $p^{2} \equiv 1(\bmod a), c_{0}=c_{2}=c_{4}=\cdots$. By Corollary 1, $c_{1}=$ residue of $c_{0} p(\bmod a)$. Hence $c_{1} \equiv-c_{0} \equiv a-c_{0}(\bmod a)$, and $c_{1}=a-c_{0}=c_{3}=c_{5}=\cdots$.
6. Expression for H involving digits of n to base p. Let $n=d_{h} p^{h}$ $+d_{h-1} p^{h-1}+\cdots+d_{1} p+d_{0}$, and let $s=d_{0}+d_{1}+\cdots+d_{h}$, with $0 \leqq d_{r}$ $\leqq p-1$. On substituting the above value of n in (6) we obtain

$$
\begin{aligned}
H & =\sum_{r=1}^{\infty}\left[\frac{d_{h} p^{h}+d_{h-1} p^{h-1}+\cdots+d_{r} p^{r}}{p^{r}}\right. \\
& \left.+\frac{p^{r}+d_{r-1} p^{r-1}+\cdots+d_{1} p+d_{0}-i_{r} p^{r-1}-\cdots-i_{2} p-i_{1}-1}{p^{r}}\right]
\end{aligned}
$$

We shall designate the second term in the brackets by F_{r}. When $d_{r-1} p^{r-1}+d_{r-2} p^{r-2}+\cdots+d_{0} \geqq i_{r} p^{r-1}+i_{r-1} p^{r-2}+\cdots+i_{1}+1$, we obtain $1 \leqq F_{r}<2$. Since each d and each i is less than or equal to $p-1$, this will occur when and only when $d_{r-1}>i_{r}$, or

$$
\begin{equation*}
d_{r-1}=i_{r} \quad \text { and } \quad d_{r-1-b}>i_{r-b} \tag{8}
\end{equation*}
$$

where $r-1-b \geqq 0$ and d_{r-1-b} is the first d of lower subscript than d_{r-1} which is not equal to the corresponding i. (The letter i_{r} corresponds to d_{r-1}. Though $d_{h+u}=0$ when $u \geqq 1$, it is possible to have the corresponding letter $i=0$ and $F_{h+v} \geqq 1, v \geqq 1$.) When $d_{r-1} p^{r-1}+d_{r-2} p^{r-2}$ $+\cdots+d_{0}<i_{r} p^{r-1}+i_{r-1} p^{r-2}+\cdots+i_{1}+1$, we have $0 \leqq F_{r}<1$. From the above it follows that $H=\sum_{r=1}^{\infty}\left[n / p^{r}\right]+\sum_{r=1}^{\infty}\left[F_{r}\right]$ and finally that

$$
\begin{equation*}
H=\frac{n-s}{p-1}+g \tag{9}
\end{equation*}
$$

where g is the number of values of $r \geqq 1$ for which $d_{r-1} \geqq i_{r}$, the equality sign being used only when the conditions of (8) are fulfilled.

In the case of $n!, i=p-1$. Hence $g=0$ and $H=(n-s) /(p-1)$.
In the case of $1 \cdot 3 \cdot 5 \cdots \cdot(2 n-1), i=(p-1) / 2$ and g is the number of values of $r \geqq 0$ for which $d_{r} \geqq(p-1) / 2$, with the restriction on the equality sign.

Example. This example illustrates the use of (9). Consider the product (22)(27)(32)(37)(42) with $p=3$. From $i_{r} a+c_{r-1}=c_{r} p$ we obtain $i_{1}=1, i_{2}=0, i_{3}=0, i_{4}=1$; and $n=5=(1)(3)+(2)$. Hence $d_{0}=2$, $d_{1}=1 ; d_{r}=0, r>1$. Since $d_{0}>i_{1}, d_{1}>i_{2}, d_{2}=i_{3}$, and $d_{4}<i_{4}$, we have $g=3$. $H=(5-3) / 2+3=4$.
7. Expression for H involving digits of $l=a(n-1)+c_{0}$ to base p. Let $l=\delta_{\lambda} p^{\lambda}+\delta_{\lambda-1} p^{\lambda-1}+\cdots+\delta_{0}$ and $\sigma=\delta_{0}+\delta_{1}+\cdots+\delta_{\lambda}$, with $0 \leqq \delta_{r} \leqq p-1$. Since $l \leqq p^{\lambda+1}-1$ and $c_{r} \geqq 1$, all terms of (7) beyond $\left[l / a p^{\lambda}+\left(a-c_{\lambda}\right) / a\right]$ are zero. Hence

$$
\begin{aligned}
H & =\sum_{r=1}^{\lambda}\left[\frac{a(n-1)+c_{0}+p^{r}\left(a-c_{r}\right)}{a p^{r}}\right] \\
& =\sum_{r=1}^{\lambda}\left[\frac{N_{r}}{a p^{r}}+\frac{D_{r-1}+a p^{r}-R_{r-1} p^{r}}{a p^{r}}\right],
\end{aligned}
$$

where $D_{r-1}=\delta_{r-1} p^{r-1}+\delta_{r-2} p^{r-2}+\cdots+\delta_{0}$. Here R_{r-1} is the residue $(\geqq 1$ and $\leqq a)$ of $p^{k \epsilon-r} D_{r-1}(\bmod a), \epsilon$ is the least positive exponent such that $p^{\epsilon} \equiv 1(\bmod a), k$ is an integer such that $k \epsilon-r \geqq 0$, and $N_{r}=a(n-1)+c_{0}-c_{r} p^{r}-D_{r-1}+R_{r-1} p^{r}$. By observing that $a(n-1)+c_{0}$ $-D_{r-1}=\delta_{\lambda} p^{\lambda}+\cdots+\delta_{r} p^{r}, c_{r} p^{r}-c_{0} \equiv 0(\bmod a)$ (see the theorem of §3), and $R_{r-1} p^{r}-D_{r-1} \equiv p^{k \epsilon-r} D_{r-1} p^{r}-D_{r-1} \equiv 0(\bmod a)$, we see that $N_{r} \equiv 0\left(\bmod a p^{r}\right)$.

Also because $D_{r-1} \leqq p^{r}-1$ and $1 \leqq R_{r-1} \leqq a$, we see that

$$
0 \leqq \frac{D_{r-1}+a p^{r}-R_{r-1} p^{r}}{a p^{r}}<1
$$

Therefore

$$
\begin{aligned}
H & =\sum_{r=1}^{\lambda} \frac{N_{r}}{a p^{r}} \\
& =\sum_{r=1}^{\lambda}\left(\frac{\delta_{\lambda} p^{\lambda-r}+\delta_{\lambda-1} p^{\lambda-1-r}+\cdots+\delta_{r+1} p+\delta_{r}}{a}+\frac{R_{r-1}-c_{r}}{a}\right) \\
& =\sum_{r=1}^{\lambda}\left(\frac{\delta_{r}\left(p^{r-1}+p^{r-2}+\cdots+1\right)}{a}+\frac{R_{r-1}-c_{r}}{a}\right) \\
& =\sum_{r=1}^{\lambda}\left(\frac{\delta_{r}\left(p^{r}-1\right)}{a(p-1)}+\frac{R_{r-1}-c_{r}}{a}\right),
\end{aligned}
$$

and finally

$$
\begin{equation*}
H=\frac{l-\sigma}{a(p-1)}+\sum_{r=1}^{\lambda} \frac{R_{r-1}-c_{r}}{a} \tag{10}
\end{equation*}
$$

In the case of $n!$, we have $a=1, c=1, \epsilon=1, \quad R_{r-1}=1$, and $\sum_{r=1}^{\lambda}\left(R_{r-1}-c_{r}\right) / a=0$. Therefore $H=(n-s) /(p-1)$.

In the case of $1 \cdot 3 \cdot 5 \cdots \cdots(2 n-1)$, we have $a=2, c=1$, and $\epsilon=1$. Then $R_{r-1}=1$ when D_{r-1} is odd; $R_{r-1}=2$ when D_{r-1} is even. Hence $H=(2 n-\sigma-1) / 2(p-1)+e / 2$, where e is the number of values of r, ($1 \leqq r \leqq \lambda$), for which D_{r-1} is even. When $l=p^{\lambda}, \sigma=1$ and $e=\lambda$. Therefore $H=(n-1) /(p-1)+\lambda / 2$.

Example. This example illustrates the use of (10). Determine H
for (22)(27)(32)(37)(42) with $p=3$. We obtain $\epsilon=4, l=42=(1)(3)^{3}$ $+(1)(3)^{2}+(2)(3)+0 ; \quad D_{0}=0, \quad D_{1}=6, \quad D_{2}=15 ; \quad R_{0}=5, \quad R_{1}=$ residue $(3)^{4-2}(6)(\bmod 5)=4, R_{2}=5$. From $i_{r} a+c_{r-1}=c_{r} p$, we obtain $c_{1}=9$, $c_{2}=3$, and $c_{3}=1$. Then $H=(42-4) /(5)(2)+(14-13) / 5=4$.
8. Upper and lower bounds of H. The terms of (5) and (6) vanish after the t th term, where t has the same meaning as in (3). We have $0 \leqq i_{r} \leqq p-1$. Substituting the limiting values of i_{r} in (6) we obtain

$$
\begin{align*}
& {\left[\frac{n}{p}\right]+\left[\frac{n}{p^{2}}\right]+\cdots} \tag{11}\\
& \\
& \\
&
\end{align*}
$$

It is evident from $\S 2$ that t is the index of the highest power of p dividing any one factor of $\prod_{x=0}^{n-1}\left(x a+c_{0}\right)$. Hence $t \leqq \lambda$, the index of the highest power of $p \leqq l=a(n-1)+c_{0}$. However t may exceed h, the index of the highest power of $p \leqq n$. If α is the index of the highest power of p exactly dividing n, and β is any integer $\geqq 0$, then $\left[n / p^{\beta}\right]=\left[(n-1) / p^{\beta}\right]+1$ for $\beta \leqq \alpha$, and $\left[n / p^{\beta}\right]=\left[(n-1) / p^{\beta}\right]$ for $\beta>\alpha$. Substituting these results in (11), we have

$$
\left[\frac{n}{p}\right]+\left[\frac{n}{p^{2}}\right]+\cdots \leqq H \leqq\left[\frac{n}{p}\right]+\left[\frac{n}{p^{2}}\right]+\cdots+\lambda-\alpha
$$

or

$$
\begin{equation*}
\frac{n-s}{p-1} \leqq H \leqq \frac{n-s}{p-1}+\lambda-\alpha \tag{12}
\end{equation*}
$$

9. Values of H when a and c_{0} are any positive integers. If a and c_{0} are not relatively prime let d be their greatest common divisor, with $a=a^{\prime} d$ and $c_{0}=c^{\prime} d$. Then $\prod_{x=0}^{n-1}\left(x a+c_{0}\right)=d^{n} \prod_{x=0}^{n-1}\left(x a^{\prime}+c^{\prime}\right)$. If $H, H I^{\prime}$, and h_{d} are the indices of the highest powers of p dividing $\prod_{x=0}^{n-1}\left(x a+c_{0}\right), \prod_{x=0}^{n-1}\left(x a^{\prime}+c^{\prime}\right)$, and d, respectively, then $H=H^{\prime}+n h_{d}$.

When a and c_{0} are relatively prime and $a \equiv 0(\bmod p), x a+c_{0}$ is not divisible by p and $H=0$.

Yale University

[^0]: * Presented to the Society, April 10, 1936. By a generalized factorial we mean a product of integers forming an arithmetic progression.
 \dagger Théorie des Nombres, 2d edition, 1808, p. 8.
 \ddagger This Bulletin, vol. 15 (1908-1909), pp. 217-221.

[^1]: * Sitzungsberichte der Preussischen Akademie der Wissenschaften, PhysikalischMathematische Klasse, 1929, p. 372.
 \dagger Arkiv för Matematik, Astronomi och Fysik, vol. 6 (1911), no. 34; summary in Dickson, History of the Theory of Numbers, vol. 1, p. 264.

