REMARKS ON THE CLASSICAL INVERSION FORMULA FOR THE LAPLACE INTEGRAL

D. V. WIDDER AND N. WIENER

If a function $f(s)=f(\sigma+i \tau)$ is defined for $\sigma>0$ by the Laplace integral

$$
\begin{equation*}
f(s)=\int_{0}^{\infty} e^{-s t} \phi(t) d t \tag{1}
\end{equation*}
$$

then the classical inversion formula is

$$
\begin{equation*}
\phi(t)=\frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} f(s) e^{s t} d s, \quad \quad c>0, t>0 \tag{2}
\end{equation*}
$$

Conditions for the validity of this formula have frequently been discussed. However, the authors know of no adequate treatment* of the case when $\phi(t)$ belongs to L^{2} in ($0, \infty$):

$$
\begin{equation*}
\int_{0}^{\infty}|\phi(t)|^{2} d t<\infty \tag{3}
\end{equation*}
$$

We employ here the usual notation,

$$
\underset{a \rightarrow \infty}{\operatorname{li.m} .} \phi_{a}(t)=\phi(t),
$$

to mean that $\phi_{a}(t)$ and $\phi(t)$ belong to L^{2} in ($-\infty, \infty$) and that

$$
\lim _{a \rightarrow \infty} \int_{-\infty}^{\infty}\left|\phi_{a}(t)-\phi(t)\right|^{2} d t=0 .
$$

It is clear first that if (3) holds then (1) converges absolutely for $\sigma>0$, since

$$
|f(\sigma+i \tau)|^{2}=\left|\int_{0}^{\infty} e^{-s t} \phi(t) d t\right|^{2} \leqq \int_{0}^{\infty} e^{-2 \sigma t} d t \int_{0}^{\infty}|\phi(t)|^{2} d t
$$

Moreover, by the Plancherel theorem regarding Fourier transforms,

$$
\underset{a \rightarrow \infty}{\operatorname{l.i.m} .} \int_{0}^{a} e^{-i \tau t} \phi(t) d t
$$

[^0]exists. We denote it by $f(i \tau)$. The same theorem gives us at once that
\[

\underset{a \rightarrow \infty}{\operatorname{l.i.m} .} \frac{1}{2 \pi} \int_{-a}^{a} f(i \tau) e^{i r t} d \tau=\left\{$$
\begin{array}{cl}
\phi(t), & t>0 \\
0, & t<0
\end{array}
$$\right.
\]

or

$$
\underset{a \rightarrow \infty}{\operatorname{l.i} . \mathrm{m}} \cdot \frac{1}{2 \pi i} \int_{-i a}^{i a} f(s) e^{s t} d s=\left\{\begin{array}{cl}
\phi(t), & t>0 \tag{4}\\
0, & t<0
\end{array}\right.
$$

Hence (2) with $c=0$ is valid in the sense of (4). However, if $c>0$, (2) is no longer valid in this sense.

If $c>0$, it is again clear from the Plancherel theorem that

$$
\underset{a \rightarrow \infty}{\operatorname{l.i.m} .} \frac{1}{2 \pi} \int_{-a}^{a} f(c+i \tau) e^{i \tau t} d \tau=\left\{\begin{array}{cc}
e^{-c t} \phi(t), & t>0 \\
0, & t<0
\end{array}\right.
$$

But this does not imply that

$$
\underset{a \rightarrow \infty}{\operatorname{l.i} . \mathrm{m} .} \int_{c-i a}^{c+i a} f(s) e^{s t} d s=\left\{\begin{array}{cc}
\phi(t), & t>0 \\
0, & t<0
\end{array}\right.
$$

unless $f(s)$ is identically zero. For, set $\phi_{a}(t)=\int_{-a}^{a} f(c+i \tau) e^{i r t} d \tau$. It will be sufficient to show that

$$
\begin{equation*}
\int_{-\infty}^{\infty} e^{2 c t}\left|\phi_{a}(t)\right|^{2} d t=\infty \tag{5}
\end{equation*}
$$

for some a. Choose a so that

$$
\begin{equation*}
f(c+i a) \neq f(c-i a) \tag{6}
\end{equation*}
$$

This is possible, for otherwise we should have by use of (1) that

$$
\int_{0}^{\infty} e^{-c t} \phi(t) \sin a t d t=0
$$

for all a. By the uniqueness theorem for the Fourier sine transform this would imply that $\phi(t)$ is equivalent to zero and that $f(s)$ is identically zero. In fact we see that (6) may be satisfied for some a in every interval however small.

An integration by parts of the integral defining $\phi_{a}(t)$ gives

$$
\begin{aligned}
\phi_{a}(t) & =\frac{f(c+i a) e^{i a t}-f(c-i a) e^{-i a t}}{i t}-\frac{1}{t} \int_{-a}^{a} e^{i \tau t} f^{\prime}(c+i \tau) d \tau \\
& =\frac{f(c+i a) e^{i a t}-f(c-i a) e^{-i a t}}{i t}+o\left(\frac{1}{|t|}\right), \quad|t| \rightarrow \infty
\end{aligned}
$$

$$
\begin{aligned}
= & \frac{e^{i a t}}{i t}\left[\{f(c+i a)-f(c-i a)\}+f(c-i a)\left(1-e^{-2 i a t}\right)\right] \\
& +o\left(\frac{1}{|t|}\right) .
\end{aligned}
$$

Hence

$$
t^{2}\left|\phi_{a}(t)\right|^{2} \geqq\left[\frac{k}{2}-2 l|\sin a t|\right]^{2}, \quad t>t_{0}
$$

where t_{0} is a sufficiently large positive number and

$$
k=|f(c+i a)-f(c-i a)| \neq 0, \quad l=|f(c-i a)|
$$

Since $2 l|\sin a t|<k / 4$ in an interval of length δ, say, about $t=0$ and in intervals congruent to this one, modulo π / a, it is clear that the integrand of (5) exceeds $k^{2} e^{2 c t} / 16 t^{2}$ in infinitely many intervals of length δ. This is sufficient to insure the divergence of the integral.

We collect our results in the following form:
Theorem. If $\phi(t)$ belongs to L^{2} in $(0, \infty)$, then it has a Laplace transform $f(\sigma+i \tau)$ defined for $\sigma>0$ by the absolutely convergent integral

$$
f(\sigma+i \tau)=\int_{0}^{\infty} e^{-(\sigma+i \tau) t} \phi(t) d t
$$

and for $\sigma=0 b y$

$$
f(i \tau)=\underset{a \rightarrow \infty}{\operatorname{li.m} .} \int_{0}^{a} e^{-i \tau t} \phi(t) d t
$$

The inversion formula

$$
\underset{a \rightarrow \infty}{\operatorname{l.i.m}} \frac{1}{2 \pi i} \int_{c-i a}^{c+i a} f(s) e^{s t} d s=\left\{\begin{array}{cl}
\phi(t), & t>0 \\
0, & t<0
\end{array}\right.
$$

is false $(f(s) \not \equiv 0)$ for $c>0$ and valid for $c=0$. For all $c \geqq 0$

$$
\underset{a \rightarrow \infty}{\operatorname{l.i.m}} \frac{1}{2 \pi} \int_{-a}^{a} f(c+i \tau) e^{i r t} d \tau=\left\{\begin{array}{cc}
e^{-c t} \phi(t), & t>0 \\
0, & t<0
\end{array}\right.
$$

Harvard University and
Massachusetts Institute of Technology

[^0]: * But compare G. Doetsch, Bedingungen filr die Darstellbarkeit einer Funktion als Laplace Integral und eine Umkehrformel fiur die Laplace-Transformation, Mathematische Zeitschrift, vol. 42 (1936), p. 272, Theorem 1.

