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Leçons sur les Principes Topologiques de la Théorie des Fonctions Analytiques. By S. 

Stöilow. Paris, Gauthier-Villars, 1938. 10 + 148 pp. 

This volume is another of the well known series, Collection de Monographies sur la 
Théorie des Fonctions, edited by É. Borel. I ts purpose is to study the purely topologi­
cal aspects of the theory of Riemann surfaces and of analytic functions, and to 
derive some standard theorems and generalizations from this point of view. The key 
theorem here, that an "interior transformation" is topologically equivalent to an 
analytic function, was first proved by Stöilow in 1928, in the Annales de l'École Nor­
male, (3), vol. 45, p. 367. 

Of course, standard parts of classical function theory are partly topological in 
nature; we may mention the theorem of Stokes (on which Cauchy's integral the­
orem is based), the monodromy theorem, and the fundamental theorem of algebra. 
However, it is not with this side of the subject that Stöilow is concerned, for these 
theorems cannot be put in purely topological form. The author assumes that the 
reader is acquainted with classical function theory, including its topological aspects, 
centering around the Jordan curve theorem. 

The first chapter is an introduction to the general theory of topological spaces 
and of manifolds (particularly 2-dimensional manifolds). Different postulate systems 
are given, and such topics as the properties of open and closed sets, neighborhoods, 
compact spaces, and connected sets are studied. It must be said that several defini­
tions and theorems (such as a definition of the term "totalement discontinue," and 
the theorem that a (1—1) continuous transformation of a compact space is a homeo-
morphism) are not given, though they are used in later chapters. The second half of 
the chapter is devoted to the theorem of Brouwer on the invariance of regions. The 
w-dimensional case is given, using the Sperner proof of the Lebesgue lemma. The 
author remarks that the 2-dimensional case, which is all that is needed in the book, 
may be proved much more simply. The average reader will wish that he had given 
such a proof. 

Riemann surfaces are defined, and their relations to analytic functions are given, 
in the second chapter. Unlike Weyl, Stöilow defines a Riemann surface as being a 
system composed of a surface V, together with a mapping ƒ of this surface on the 
(extended) complex plane Vo, certain conditions being satisfied. These conditions are 
that the interiors of a finite or denumerable set Ôi, £2, • • '• of closed regions cover V 
and tha t , for each i, ƒ be topologically equivalent to w = zn» for some w», in 5*. That is, 
there are topological mappings h and ho of 8{ and f(ôi) into the unit circle in the com­
plex plane such tha t 

(1) ho(f(hrKz))) = a*. 

(In the definition of Weyl, the function ƒ is not given, but it is assumed that there is 
an analytic metric given in V; his assumption of the triangulability of V was shown 
to be unnecessary by Radó.) It is easily seen that the Riemann surface F correspond­
ing to an analytic function ƒ satisfies these conditions. The converse is also proved 
here, using the method of Weyl, Courant, and Fatou. 

The third and fourth chapters are devoted to a study of 2-dimensional manifolds 
in general, determining what ones can be Riemann surfaces (that is, can be the part 
V of the pair V,f), and classifying these. To make V a Riemann surface, one must 
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find a suitable mapping of F on the complex plane. This is possible if F can be covered 
by a finite or denumerable number of neighborhoods homeomorphic to a region in the 
plane, and if V is orientable. The classification follows the standard procedure, due 
to Jordan for closed surfaces, and to Kerékjartó for open surfaces. 

In Chapter 5, the topological characterization of analytic functions is given. A 
transformation ƒ of the space X into the space Xo is called equivalent to the transfor­
mation ƒ ' of X' into X£ if there are topological transformations h of X into X' and 
ho of Xo into Xo such that 

ƒ'(*) = h<,(f(h-i(p))). 

Two properties of mappings which are invariant under this equivalence are the fol­
lowing: The image of any open set is an open set, and no closed connected set con­
taining more than one point goes into a single point. Mappings with these properties 
are called interior. (This term, or inner, is now commonly used by topologists to refer 
to mappings satisfying the first property.) The fundamental theorem is that any 
analytic function, as a mapping of its Riemann surface on the complex plane, is in­
terior, and conversely, any interior mapping of a surface on the complex plane is 
equivalent to an analytic function for which the given surface can be taken as its 
Riemann surface. The essential step in the proof is to show that an interior trans­
formation behaves locally like zn for some n, as in (1). 

The last chapter gives some applications of preceding methods and results, es­
pecially to properties of transformations of one Riemann surface into another. The 
formula of Hurwitz, relating the genus and number of boundaries of each surface to 
the degree of the transformation and the total amount of branching, is given and 
generalized. Asymptotic and limiting values of an analytic function are discussed. 

The book should prove of real interest to anyone wishing to study deeply into the 
underlying topological properties of Riemann surfaces and analytic functions. On the 
whole, the exposition is quite clear, though here and there one finds slight errors and 
omissions of important details. 

HASSLER WHITNEY 

Opérations Infinitésimales Linéaires. By Vito Volterra and Bohuslav Hostinsky. Paris' 
Gauthiers-Villars, 1938. 7+238 pp. 

The infinitesimal calculus of linear operators was invented by Volterra in 1887, 
and it is with unusual interest tha t one opens a volume written fifty years later on 
this important subject, when one discovers that he is a coauthor. 

Consider a linear operator X which is a function X(t) of the time t. If multiplica­
tion is taken as the fundamental operation,* then analogy with ordinary functions 
suggests letting the quotient X{t-\-At)X~l{t) measure the "change" in X during the 
interval from t to t+At, and 

(1) \im~[X(t + At)X^(t)] 
At-*o At 

measure the "rate of change," or "derivative" (more properly, right-derivative) of 
X(t). It is natural to regard this derivative as a sort of "infinitesimal linear operator," 
whence the title of the book. 

* If addition is taken as the fundamental operation, one gets the (commutative) 
infinitesimal calculus of vectors, which was discussed by H. Grassmann in 1862, in 
his Ausdehnungslehre, part 2, chaps. 2-4. 


