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ON FUNDAMENTAL FUNCTIONS OF LAGRANGEAN 
INTERPOLATION 

PAUL ERDÖS AND BELA A. LENGYEL 

Introduction. I t was shown in a number of recent papers that inter
polation with fundamental abscissas chosen at the roots of various 
orthogonal polynomials is of considerable interest. 

Let I — [a, (3] be a closed interval on the real axis, and let p{x) be 
greater than zero in I. The orthogonal polynomials with respect to 
p(x) will be denoted by <frn(x). Thus, by definition, 

ƒ p(x)<t>n(x)<j>m(x)dx = bnm, n, m = 0, 1, 2, 

Erdös and Turân* proved important properties of the interpolating 
polynomial for the case when the zeros of <£n(#) are taken for abscissas 
of interpolation. The theorems so deduced enabled the authors cited 
to draw important conclusions concerning the distribution of the 
roots of orthogonal polynomials. The proofs of Erdös and Turân are 
based on some properties of the fundamental functions of interpola
tion 

hn (x) = ; f 
(X - Xk

n)<l>n (%kn) 

which we do not intend to repeat here. However, it is our purpose to 
add a few theorems concerning the properties of these fundamental 
functions. Our main result is the following theorem: 

THEOREM. If M ^ ( x ) ^ m > 0 , and if p(x) is continuous in the finite 
interval 1= [a,@] and the abscissas of interpolation are chosen as described 
above, then the maximum of Itf (x) in [a+ €, /3 — e] tends to one as n tends 
to infinity for all k for which a+e^xi? ^/3 — e, e being an arbitrary 
positive number. 

We shall make use of the following relations : 

(1) I p(x)hn(x)hn(x)dx = 0, if i s* k, 
J a 

* On interpolation. I, Annals of Mathematics, (2), vol. 38 (1937), pp. 142-155. 
t The function hn{x) is not the nth. power of h{x); it stands for hM(x). Similarly, 

Xkn stands for #*(n>. The upper indices will be omitted completely in all formulas 
where there is no risk of misunderstanding. 
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p(x)hn(x)dx = I p(x)[hn(x)]2 > 0. 
a "a 

Erdös and Turân have proved that if p(x) ^ ô > 0 , then for any Rie-
mann integrable function ƒ(x) 

lim f [f(x)-Ln(f)]*dx = 0, 

where 

Then from this theorem follows the well known property of x? that 
the maximum of the distance of two consecutive abscissas tends to 0 
as n tends to infinity: 

max | Xin — X$JL | = 8n —> 0, n —> oo .* 
< = 1 , • • • , n 

For, if this were not true, then we could find a number 8 > 0 and a se
quence of integers n\, ni, • • • such that SnA .^S>0, for & = l, 2, • • • . 
The centers of the respective intervals which have the length 8nk 

would have at least one limit point X in / . Thus there would exist a 
subsequence mi, ra2, • • • such that the interval with the center X and 
the length 5/2 would contain no roots of <f>mk(x). The f unction ƒ (x), 
equal to one in this interval and zero elsewhere, is integrable, 
£m*C0=0> and 

l "[f-Lmie(f)Ydx=j*0, 

in contradiction to the theorem. The same reasoning shows that 
Xin —a and /3 — x£ also tend to zero with 1/n. 

1. A minimum problem. We start with a well known minimum 
problem: Given p(x) ^ 0 , to determine the polynomial fn(x) of degree 
not exceeding n — 1 subject to the condition/(a) = 1, (a^a^fi), which 
makes fip(x) [ƒ(#) ^dx minimum. To solve this problem we write 
fn{x) ==^2^iaili(x)t where the coefficients a* have to be determined.f 
The condition is 

* This has been proved by Fejér for p(x) ss 1. His proof applies to the general case 
without any essential change. See also J. Shohat, Théorie générale des polynômes 
orthogonaux de Tchebichef, Mémorial des Sciences Mathématiques, vol. 66, p. 49. 
The dependence of ô on n has been investigated by Erdös and Turân, On interpola
tion, II, Annals of Mathematics, (2), vol. 39 (1938), p. 702. 

t Cf, the second footnote. 
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n 

(3) fn(a) = X) aili(a) = 1, 

and the integral which has to be minimized is 

p(x)[fn(x)]2dx = I p{oo)^ ]>j aia,jli(oc)lj(%)dx. 

In consequence of equations (1) and (2) this becomes 

(4) E W • 
If we consider the quantities atX//2 and U{a)/\^12 as components of 
vectors in an ^-dimensional space, then it becomes evident that (4) 
attains its minimum if atXj1/2 = C/i(a)/Xj1/2, where 

1 
C = j . Ma)]* 

t=] X» 

Thus we find* 

1 A h(a)h(x) 

A L^WJ2 <-i Xt-

t = l X ; 

In the special case when a coincides with a root of </>n(%)t
 saY #&n> 

we have fn(x) =/&w(^); that is, the fundamental function is the mini
mizing function. This can be verified directly. 

Let A and B be positive numbers. The polynomial fn(x) of degree 
less than n, which has the value A at the point Xk and the value B 
at the point xr and minimizes the integral of p(x)[f(x)]2 over / , is 
Alk(x)+Blr(x). In fact, let 

n 

fn(%) = X aili(x). 

The two conditions are 
* The same solution is given in the theory of orthogonal polynomials in the 

form fn(x)=Yl7^l<f>i(%)<t>i(a)/lE,l=o<j>i2(a). Comparing with equation (5) we get 
2Lo0»2(öO=XLiJ»2(#)At, and this evidently holds for any a (both sides being 
polynomials). Cf. J. Shohat, On interpolation, Annals of Mathematics, (2), vol. 34 
(1933), pp. 130-146; p. 145. 
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22 aiU(ock) = ak = A, ]T) dili(xr) = ar = B. 
»=i t= i 

The s u m ^ T ^ ^ X * has to be a minimum. Evidently a4 = 0 if i^fe, and 
i^r. 

2. Bounds of the fundamental functions. It was supposed in §1 
that p(x) ^ 0. From now on we shall suppose that p{x) is continuous in 
7 and remains between two fixed positive bounds, M^p(x)^m>0. 

Let fn(x)a, or briefly fn(x), denote the polynomial described at the 
beginning of §1, that is, the polynomial of degree n — 1 which mini
mizes the integral of p(x) [f(x)]2 over 7 under the restriction ƒ (a) = 1. 
The subscript a is applied to indicate the dependence of fn on a. 

THEOREM 1. If a is in the interior of 7, then to every 5 > 0 there corre
sponds an € such that 

(6) fn(x)a <l+d 

for all n, whenever \x~a\ <e . 
If a is restricted to any closed subinterval of 7, then there exists an e 

independent of a such that (6) holds if \ x — a\ <e . 

If the theorem were not true, then for given a and any small e > 0 
there would exist at least one n such that for some %n 

(7) ƒ»(£») = 1 + 0 

and a^a — €^£ n rga + e^/3. Here we use the fact that a is in the in
terior of 7. Without loss of generality we can assume that a = 0 and 
that Çn<#. We introduce the function gn(x)=fn(cnx)/(l + ô), where 
cn = f n / a < l . Evidently gn(a) =/n(£n)/( l + 8) = 1; hence 

(8) f p(x)[gn(x)]2dx ^ f p(x)[fn(x)]2dx. 
J a J a 

On the other hand, setting y — cnxf we obtain* 

p{x) [gn(x)]2dx = p{y/cn) [fn(y)]2dy 
o cn{\ + d)2J o 

1 rP 
— — p(x/c)[fn(x)]2dx. 
+ d)2J o 

By hypothesis, 0<& — £n = a( l — cn) <e, 0 < 1 —cn<e/a. Hence if S and 
# are fixed, then e (independent of n) can be chosen so small that 

* For x>p we define £(x) =/>(£). 
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cn(l + ö)>l. Thus by (8) and (9) we have the following inequality: 

(10) (1 + Ô) f p(x)[fn(x)]*dx < f p(x/cn)[fn(x)Ydx, 
J o J o 

or 

P(*)[fn(*)\*dx < I [p(x/cn) - p{x)][fn{x)]Hx. 
o J o 

However, this last inequality contains a contradiction. For, if e is 
small enough, then on account of the continuity of p{x), 

| p(x) — p(x/cn) | < ôm 

for all cn such that l > c n > l — e/a. Hence (11) leads to a contradic
tion, namely 

#(* ) [ / » (* ) ] 2 <fo < Ôm I f / n ( x ) ] 2 J x < Ö I / ^ [ / « O O N * -
o J o J o 

This proof depends on the possibility of making 1 — cn small by choos
ing e small enough. This was possible for every fixed a because of the 
relation 0 < 1 — cn<e/a. Of course e depends on a. However, if a is 
confined to a closed subinterval I', wholly in the interior of [0, /?], 
then there exists an e for which (6) holds for all a throughout I''. 
Thereby Theorem 1 is proved. 

THEOREM 2. Let I' be any closed subinterval wholly ici the interior 
of 7, and let e be a fixed positive number) then for all k for which xk

n is 
in I' the maximum of lk

n (x) in the set consisting of I' minus the interval 
[xk

n —e, xk
n + e ] tends uniformly to 0 as n tends to infinity. 

The word "uniformly" has to be understood as follows: Let Ank 

be the maximum of lk
n(x) in the set described in the theorem; then 

for every rj > 0 there exists an N such that Ank <rj whenever n>N for 
all k such that xk

n is contained in I'. This theorem states the fact that 
the fundamental functions lk

n (x) which belong to abscissas entirely 
in the interior of I are small everywhere, except possibly at both ends 
of the interval I and in a small neighborhood of the respective ab
scissas to which they belong. 

PROOF. Let I" denote the difference of the set I' and the open in
terval [xk

n — €, xk
n+e]. The interval I" will depend on e, n, and k; 

it will consist of two intervals [a'', xk
n — e] and [xk

n+ey j8;]. Let £ be 
the abscissa in I" for which lk

n (£) =Ank- Evidently £ cannot coincide 
with any root xiy for lk

n(xi) = 0 if iy^k. We may assume that xk
n = 0, 
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since we can always introduce, if necessary, a new variable X ~~— X Xk • 
We may also assume that £ <^xk

n + € = e. 
If n is large enough, the roots of (/>n(x) extend beyond both ends of 

the interval / ' , in consequence of the fact explained in the last para
graph of the introduction. Therefore £ lies between two roots of <j>n{x) • 

(12) #r_] < £ < xr. 

Let c = £/cr<l. (It will be well to remember that xrt £, and c depend 
on n, and that we use them as abbreviations for xr

n, £n, and cn.) The 
polynomial ƒ(x) — lk

n (ex) has the following properties: 
(i) I t is of degree n — 1. 
(ii) ƒ « » = / * (0) = 1. 

(iii) f(xr)=lkn(cXr)=Ank. 
It follows from the results of §1 that 

p(x) [h(cx)]2dx ^ I p(x) [lk(x) + Anklr(x)]2dx 
x- - , a J a 

= X& + 4̂nfcXr. 

Substituting y = £x, we obtain 

(14) 

#(*) [4(c*)]2<f* = — I p(y/c) [h(y)]*dy 
a C J ac 

1 nfi 
— I p(x/c)[lk(x)]2dx. 
C J a. 

< 
c 

According to the last paragraph of the introduction, the maximum 
of \xin— Xin-i\ tends to 0 with 1/n. Moreover, by hypothesis £>e ; 
therefore, given any <?<1, there exists an N such that, by virtue of 
(12), q<i;n/xn = cn<l for all n>N. On account of the continuity of 
p(x), for any rj>0 there exists a q such that \p(x) — p(x/c)\ <y\m,, 
if q<c<l. Hence 

(15) 

[p(x) - p(x/c)][hn(x)]2dx < rjtn I [hn(x)]2dx 
a J a 

/

P 
p(x)[hn(x)]2dx = i)\k 

We now obtain from equations (13), (14), and (15) the relation 

1 / l - c 1 \ 
X* + Ank\r < Xfc(l + V) = X* + M 1 V ) • 
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Here 1—c and rj can be chosen arbitrarily small provided that n is 
large enough. Thus, if we write out the indices n and divide by X r>0, 

, x x*w 

(16) Anh < €w, 
X? 

where en tends to 0 with 1/n. In concluding the proof of the theorem 
we shall prove the following lemma : 

LEMMA. If the conditions of Theorem 2 are satisfied, then there exists 
a positive constant K (independent of n) such that X<n/Xfcn ^K,for all x" 
and xk

n in I'. 

In other words, the generalized Cotes' numbers belonging to ab
scissas which do not come too close to the ends of the interval / are 
of the same order of magnitude. 

We may assume that I is [0, l ] and that xk<X{. If X^X», the 
statement in the lemma is evident with K = l. If X& <Xt-, we introduce 
the notation c = xk/xi<l and y = cx. By reasoning similar to that 
used in the proof of the theorem we obtain 

(17) f p(x)[h(cx)]*dx>\i9 
Jo 

f 1 M 
(18) I p(x)[lk(cx)]*dx < X*. 

J 0 cm 
By hypothesis xk^a'>0 and Xi<l, therefore c>ar and 

\M 
\in <——\k

n s K\k
n, 

am 

which we were to prove. 

THEOREM 3. If I' is any closed interval wholly in the interior of / , 
then the maximum of Iff (x) in I' tends to 1 as n tends to infinity for all 
Xkn in I'. 

For if any 5 > 0 is given, then, according to Theorem 1, we can find 
€ > 0 such that for any abscissa xk

n in I ' , lk
n(x) <l + d whenever 

\x — xk
n\ <€. Outside this interval, that is, in [ce', xk

n—e] and in 
[x + e, j8'], the maximum of lk

n (x) tends to 0 with 1/n by Theorem 2; 
therefore there exists an N such that the maximum of lk

n (x) in I" is 
less than one whenever n>N. Finally, lk

n(xk
n) = l. 
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