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each two nonparallel elements of G cross each other. Obviously the 
conclusions of the theorem do not hold. 

The following example will show that the condition that no two 
elements of the collection G shall have a complementary domain in 
common is also necessary. In the cartesian plane let M be a circle of 
radius 1 and center at the origin, and iVa circle of radius 1 and center 
at the point (5, 5). Let d be a collection which contains each con
tinuum which is the sum of M and a horizontal straight line interval 
of length 10 whose left-hand end point is on the circle M and which 
contains no point within M. Let G2 be a collection which contains 
each continuum which is the sum of N and a vertical straight line 
interval of length 10 whose upper end point is on the circle N and 
which contains no point within N. Let G = Gi+G2 . No element of G 
crosses any other element of G, but uncountably many have a com
plementary domain in common with some other element of the collec
tion. However, it is evident that no countable subcollection of G cov
ers the set of points each of which is common to two continua of the 
collection G. 

I t is not known whether or not the condition that each element of G 
shall separate some complementary domain of every other one can 
be omitted. 
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The availability of the principal axis transformation for hermitian 
matrices often simplifies the proof of theorems concerning them. In 
working with non-hermitian matrices (square or rectangular) it was 
found that a generalization of this transformation has a similar use 
for them.* A special case of this generalization has been investigated 
by Sylvester f who proved Theorem 1 (below) for square matrices 
with real elements. The unitary matrices U and V are in that case 
orthogonal matrices with real elements. Special cases had also been 

* C. Eckart, The kinetic energy of polyatomic molecules, Physical Review, vol. 46 
(1934), p. 383 ; C. Eckart and G. Young, The approximation of one matrix by another of 
lower rank, Psychometrika, vol. 1 (1936), p. 211; A. S. Householder and G. Young, 
Matrix approximation and latent roots, American Mathematical Monthly, vol. 45 
(1938), p. 302. 

t Sylvester, Messenger of Mathematics, vol. 19 (1889), p. 42. 
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discussed earlier by Beltrami and Jordan, and more recently Autonne 
and E. T. Browne have proved the theorem for square matrices with 
complex elements.f 

The following definitions will be convenient for the present pur
pose. An (r, s) matrix is one having r rows and s columns; its elements 
may be complex numbers. The hermitian transpose of an (r, s) matrix 
A, whose elements are an, is the (s, r) matrix A* whose elements are 
(a*)ji = âij. An (V, s) matrix is diagonal if its elements a,7 are all zero 
unless i=j. 

THEOREM 1. For every (r, s) matrix A, there are two unitary matrices 
U and V, such that 

D = U*AV 

is a diagonal matrix with real elements, none of which are negative. 

The proof of this theorem may be based on the observation that 
A A* is a non-negative definite hermitian (r, r) matrix; for it is the 
Gram matrix of the rows of A, considered as vectors. Consequently 
there are r vectors (that is, r (r, 1) matrices) Xi such that 

(1) AA*X> = d?Xi 

and 

(2) X?Xk = 8ik, i,k = 1, • • • , r. 

The numbers df are the characteristic values of AA*, and the Xi are 
unit vectors along its principal axes. The numbers di are real and 
may be defined to be nonnegative. I t is convenient to arrange the 
numbering of these vectors so that 

(3) d i ^ 2 ê * " è 4 > ö , dn+i = • • • = dr = 0. 

In the same way, there are s vectors (that is, s (s, 1) matrices) Fy 
such that 

(4) A*AY,- = e?Yj 

and 

(5) Y*Yi = à ft. 

If 
ei ^ e2 ^ • • • ^ em > 0, em+i = • • • = es = 0, 

f Autonne, Sur les matrices hypohermitiennes et les unitaires, Comptes Rendus de 
l'Académie des Sciences, Paris, vol. 156 (1913), pp. 858-860; E. T. Browne, this Bul
letin, vol. 36 (1930), p. 707, 
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it can be shown that m = n and ei — di whenever i^n. For if Xi are 
the vectors of (1), (2), and (3), then the n vectors defined by 

(6) Yi = A*Xi/di9 i Û », 

will satisfy (4) and (5) with ei = di. Since the characteristic values are 
unique, it follows that m cannot be less than n\ inverting the argu
ment, we see that n cannot be less than m. 

Any set of vectors Xi for which (1), (2), and (3) hold may be con
sidered as the columns of a unitary (r, r) matrix U. Then let (6) define 
the first n columns of an (s, s) matrix V, and fill in the remaining 
columns to make V unitary. These matrices U and V then satisfy the 
requirements of the theorem. 

To prove this we may first observe that if D is the matrix U*A V> 
then DD* = U*AA * U is a diagonal matrix with diagonal elements d?, 
and D*D = V*A*A F is a diagonal matrix with diagonal elements e?. 
Furthermore, if the matrix D is written as 

.. II ° i D* II 
D = 

\\Dt DtW' 
where AL, D2, D3, and D4 are {n, ri), (n, s — n), (r — n, n), and 
(r — n, s — n) matrices, respectively, then these properties of D£>* 
and D*D imply 

DzDz* + DJ)t = 0, D2*Z>2 + D?DA = 0 

(among other equations). Since D£D2, DzDgy and DAD? are all non-
negative definite hermitian matrices, it follows that they are all null 
matrices, and from this, that D2, DZl and D4 are all null matrices. I t 
remains to be shown that D\ is diagonal with no negative elements. 
Its ij-element may be written X?A F,-; and from (6), (1), and (2) it 
readily follows that 

XfAYi = afin, i,j ^ ny 

which completes the proof of Theorem 1. 
The above also proves the following result: 

COROLLARY. In Theorem 1, U* may be any unitary matrix which 
diagonalizes A A*, and there then exists a unitary matrix V such that 
the theorem is true. Similarly, F* may be taken as any unitary matrix 
which diagonalizes A*A, and there then exists a matrix U satisfying the 
requirements of the theorem. 

The theorem on the simultaneous transformation of two hermitian 
matrices to principal axes also generalizes. 
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THEOREM 2. If A and B are both (r, s) matrices, then there are two 
unitary matrices U and V such that E = U*A V, and F= U*B V are both 
diagonal matrices with real elements and such that E has no negative 
elements, if and only if AB* and B*A are both hermitian matrices. 

The necessity of the condition is an immediate consequence of the 
invariance of the class of hermitian matrices under transformations 
of the form UCU* when V is unitary, for EF* is hermitian and 
AB* = UEF* U*, and so on. The sufficiency may be proved as follows. 
Because of Theorem 1, it is no loss of generality to suppose that A 
has already been transformed to the form 

|| D 02 || 

II 0 3 0 4 II' 
where D is a real diagonal (n, n) matrix of rank #, having no negative 
elements, and O2, O3, 04 are null matrices. The matrix B may be di
vided into corresponding submatrices : 

|| G K || 

II L H 1' 
Then the condition of the theorem leads to 

K = 02, L = 03, DG* = GDy G*D = DG. 

In element notation, the last two equations are 

dig a = djgij, djgn = digi J. 

Since di, dj>0, it readily follows that G is hermitian and that 
DG = GD. From the theorem on the simultaneous transformation of 
two hermitian matrices to principal axes, it follows that there is a 
unitary (n, n) matrix P such that P*DP = D and P*GP is diagonal 
with real elements. From Theorem 1, it follows that there are also 
two unitary matrices Q and R such that Q*HR is a diagonal matrix 
with real elements. It is then readily seen that the matrices 

P 02 || 

0 2 * R II 
will satisfy Theorem 2. 
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