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In this paper we shall briefly indicate the kind of geometry ob
tained by a modification of one of HausdorfTs axioms for topological 
space. The resulting space turns out to be the contiguous point space 
of R. L. Moore (Rice Institute Pamphlet, vol. 23 (1936)). However, 
unlike Moore, we shall define contiguity, and we shall define it in 
terms of point and neighborhood. I t is in terms of these two primitive 
indefinables that Hausdorfï states his axioms for topological space 
(Mengenlehre, p . 228) : 

AXIOM 1. Every point p has a neighborhood Up. For every p, pt Up. 

AXIOM 2. For every two neighborhoods Uv and Vp of the same point, 
there is a third Wp c UP • Vp. 

AXIOM 3. Every point qt Up has a neighborhood UQ c Up. 

AXIOM 4. For every p and q, pT^q implies that there exist neighbor
hoods Up and Uq such that Up- Uq~0. 

A contiguous point space will be defined by the Axioms 1-3 to
gether with the following new axiom : 

AXIOM 4 ' . There exist points, for example, p and q, such that pT^q 
and such that for every Up and Uq the common part Up- Uq contains both 
p and q. 

This axiom is obtained by negating 4 and substituting the condi
tion Up- UqD (p, q) for the weaker condition Up- UQ9^0. The property 
given by 4 ' approximates our ordinary idea of contiguity; we set this 
down as a formal definition. 

DEFINITION. The point p is said to be contiguous to the point q if 
(1) p7*q, and (2) any neighborhood of the one point contains the other. 

First, it may be pointed out, no space containing contiguous points 
can be a topological space. This is obvious from the method of deriv
ing 4 ' . In topological space a set must have at least a denumerable 
infinity of points in order for it to have a limit point. This is not true 
for contiguous points since, if p and q are contiguous, the point p is a 
limit point of the set (q), which is a set containing only one point. 

THEOREM 1. No point is contiguous to itself. 
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THEOREM 2. If a point p is contiguous to qt then q is contiguous to p. 

Theorem 1 results immediately from the first part of the definition 
of "contiguous to" while Theorem 2 is a consequence of the symmetry 
of both parts. 

DEFINITION. The point p is said to be contiguous to the set M if p is 
contiguous to some point which is an element of M. 

THEOREM 3. If pis contiguous to M, then p is a limit point of M. 

PROOF. Let q c M be a point which is contiguous to p. Then every 
neighborhood of p contains qy which is an element of M. Hence p is a 
limit point of M. 

THEOREM 4. If M is a closed point set and every point of the set H 
is contiguous to M, then no point of 1 —M is a limit point of H. 

PROOF. By Theorem 3, every point of H is a limit point of M. 
Since M is closed, H is contained in M and consequently can have 
no limit points in 1 — M. 

Theorems 1, 2, and 4 were taken as axioms by Moore. This was 
necessary since contiguity was an undefined concept in his system. 
By defining "contiguous to" in terms of "point" and "neighborhood" 
we were able to derive these three propositions from one axiom, 
namely, 4 ' . In addition we are saved the trouble of redefining a 
number of concepts such as "connectivity" and "boundary point"; 
for example, the idea of contiguity was used by Moore chiefly in rela
tion with connectivity. Ordinarily, the sets A and B are said to be 
mutually separated if they satisfy the following conditions: 

(1) They are mutually exclusive. 
(2) Neither of them contains a limit point of the other. 

To these Moore adds the further condition: 

(3) No point of A is contiguous to any point of B. 

Thus the notion of connectedness, which is defined in terms of this 
definition acquires a new significance in spaces containing contiguous 
points. A set is said to be connected if and only if it is not the sum of 
two mutually separated sets. 

The additional condition (3) which Moore had to assume now be
comes unnecessary since it results from the other two in conjunction 
with Theorem 3. This may be stated as a theorem: 



174 THEODORE HAILPERIN 

THEOREM 5. If M and Nare connected sets and there exists a point 
p t M which is contiguous to N, then M+Nis connected. 

THEOREM 6. Ifpzl — Mand p is contiguous to M, then pis a bound
ary point of M. 

This results immediately from Theorem 3. Here again we have de
rived a property which Moore had to assume (by enlarging the defini
tion of "boundary point," loc. cit., p . 7). 

THEOREM 7. If p is contiguous to q, the set (p, q) is connected. 

THEOREM 8. If p is contiguous to q and there exists a neighborhood 
containing p and q but no other contiguous points besides p and q, then 
the set (p, q)j consisting solely of p and q, is closed, connected, and com
pact; that is, is a simple continuous arc from p to q. 

PROOF. The set is closed since the only limit points which (p, q) 
may have must be contiguous to p or q and this is ruled out by hy
pothesis. The set is connected by Theorem 8, and, finally, is obviously 
compact since it contains no infinite subset. 

These theorems suffice to indicate the type of geometry which con
tiguity involves. For some important applications the reader is rec
ommended to the aforementioned work of R. L. Moore.* 

UNIVERSITY OF MICHIGAN 

* At an advanced stage in his paper, Moore introduces a restrictive axiom (loc. 
cit. p. 39): 

AXIOM D. There do not exist 3 distinct points such that each of them is contiguous to 
each of the others. 

This axiom can only be proved here by assuming that our points are linearly 
ordered. 


