JACKSON SUMMATION OF THE FABER DEVELOPMENT*

W. E. SEWELL

1. Introduction. The purpose of this note is to prove the following theorem:

Theorem. Let C be an analytic Jordan curve in the z-plane, and let $f(z)$ be analytic in C, continuous in \bar{C}, the closed limited set bounded by C, and let $\dagger f^{(p)}(z),(p \geqq 0)$, satisfy a Lipschitz condition \ddagger of order α, ($0<\alpha \leqq 1$), on C. Then

$$
\begin{equation*}
\left|f(z)-\sum_{v=0}^{n} d_{n v} a_{\nu} P_{\nu}(z)\right| \leqq \frac{M}{n^{p+\alpha}}, \quad \quad z \text { in } \bar{C}, \tag{1}
\end{equation*}
$$

where M is a constant independent of n and z,

$$
\sum_{\nu=0}^{n} a_{\nu} P_{\nu}(z)
$$

is the sum of the first $n+1$ terms of the development of $f(z)$ in the Faber§ polynomials belonging to C, and $d_{n v}$ is the Jackson $\|$ summation coefficient of order p.

In a previous paper the author Φ showed that under the above hypothesis

$$
\left|f(z)-\sum_{0}^{n} a_{\nu} P_{\nu}(z)\right| \leqq M\left(\log n / n^{p+\alpha}\right), \quad \quad z \text { in } \bar{C} .
$$

Later John Curtiss** proved the existence of a sequence of polynomials $Q_{n}(z)$ of respective degrees $n,(n=1,2, \cdots)$, such that

$$
\left|f(z)-Q_{n}(z)\right| \leqq M / n^{p+\alpha} .
$$

[^0]In a paper soon to appear, Walsh and the author state that for $p=0$, $(0<\alpha<1)$, the inequality $\left|f(z)-\sigma_{n}(z)\right| \leqq M / n^{\alpha}$ is valid, where $\sigma_{n}(z)$ is the nth arithmetic mean of the development of $f(z)$ in the Faber polynomials belonging to C. Here we extend this result by exhibiting a set of polynomials (proved by Curtiss to exist) with the prescribed degree of convergence for arbitrary p and for $0<\alpha \leqq 1$.

2. Proof of the theorem. Let

$$
\begin{equation*}
z=\psi(t)=\frac{1}{t}+b_{0}+b_{1} t+b_{2} t^{2}+\cdots=\frac{1}{t}+\mathfrak{B}(t) \tag{2}
\end{equation*}
$$

map the exterior of C on the region $|t|<r$ of the complex t-plane so that the point $z=\infty$ corresponds to the point $t=0$. It follows from the analyticity of C that the right-hand side of (2) converges for $|t| \leqq r^{\prime}, r^{\prime}>r$. The Faber polynomials belonging to C are defined as follows: $P_{n}(z)$ is the polynomial of degree n in z such that the coefficient of z^{n} is unity, and, as a function of t through (2), such that the coefficients are zero for the terms in $t^{-n+1}, t^{-n+2}, \cdots, t^{-1}, t^{0}$; hence $P_{n}(z)=1 / t^{n}+t \Re_{n}(t)$, where $\mathfrak{M}_{n}(t)$ converges for $|t| \leqq r^{\prime}$.

Faber (loc. cit.) and the author (SI) have shown that

$$
\begin{array}{rlr}
f(z) & =\sum_{\nu=0}^{\infty} a_{\nu} P_{\nu}(z), & z \text { in } \bar{C}, \\
& =\sum_{\nu=0}^{\infty} a_{\nu}\left(\frac{1}{t^{\nu}}+t \oiint_{\nu}(t)\right)=\sum_{\nu=0}^{\infty} \frac{a_{\nu}}{t^{\nu}}+\sum_{1}^{\infty} c_{\nu} t^{\nu}, & r \leqq|t| \leqq r^{\prime} .
\end{array}
$$

It should be noted here that (Faber, loc. cit.) $\left|a_{\nu}\right| \leqq M_{1} r^{\nu}$ and $\left|\Re_{\nu}(t)\right| \leqq M_{2} / r^{\prime} \nu$, where M_{1} and M_{2} are constants.

Now we consider

$$
\begin{aligned}
& f(z)-\sum_{\nu=0}^{n} d_{n \nu} a_{\nu} P_{\nu}(z)= f(\psi(t))-\sum_{\nu=0}^{n} d_{n \nu} a_{\nu}\left(\frac{1}{t^{\nu}}+t \Re_{\nu}(t)\right) \\
&= f(\psi(t))-\sum_{1}^{\infty} c_{\nu} t^{\nu}-\sum_{\nu=0}^{n} d_{n \nu} a_{\nu} / t^{\nu} \\
&-\sum_{\nu=1}^{n} d_{n \nu} a_{\nu} t \Re_{\nu}(t)+\sum_{\nu=1}^{\infty} c_{\nu} t^{\nu} \\
&= f(\psi(t))-\sum_{1}^{\infty} c_{\nu} t^{\nu}-\sum_{\nu=0}^{n} d_{n \nu} a_{\nu} / t^{\nu} \\
&+\sum_{\nu=1}^{n}\left(1-d_{n \nu}\right) a_{\nu} t \Re_{\nu}(t)+\sum_{n+1}^{\infty} a_{\nu} t \oiint_{\nu}(t), \\
& \quad r \leqq|t| \leqq r^{\prime} .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\left|f(z)-\sum_{\nu=0}^{n} d_{n \nu} a_{\nu} \Re_{\nu}(z)\right| \leqq & \left|f(\psi(t))-\sum_{1}^{\infty} c_{\nu} t^{\nu}-\sum_{\nu=0}^{n} d_{n \nu} a_{\nu} / t^{\nu}\right| \\
& +\left|\sum_{\nu=1}^{n}\left(1-d_{n \nu}\right) a_{\nu} t \Re_{\nu}(t)\right| \\
& +\left|\sum_{n+1}^{\infty} a_{\nu} t \Re_{\nu}(t)\right|, \quad r \leqq|t| \leqq r^{\prime}
\end{aligned}
$$

The sum $\sum_{\nu=0}^{n} d_{n \nu} a_{\nu} / t^{\nu}$ is (SI) the Jackson summation of the first $n+1$ terms of the Taylor development of the function $f(\psi(t))-\sum_{1}^{\infty} c_{\nu} t^{\nu}$ and consequently (Jackson, loc. cit.; Curtiss, loc. cit.)

$$
\left|f(\psi(t))-\sum_{1}^{\infty} c_{\nu} t^{\nu}-\sum_{\nu=0}^{n} d_{n \nu} a_{\nu} / t^{\nu}\right| \leqq \frac{M_{3}}{n^{p+\alpha}}, \quad r \leqq|t| \leqq r^{\prime}
$$

Also

$$
\begin{aligned}
\left|\sum_{n+1}^{\infty} a_{\nu} t \Re_{\nu}(t)\right| & \leqq \sum_{n+1}^{\infty}\left|a_{\nu}\right||t|\left|\Re_{\nu}(t)\right| \leqq M_{1} M_{2} r \sum_{n+1}^{\infty}\left(\frac{r}{r^{\prime}}\right)^{\nu} \\
& \leqq \frac{M_{4}}{n^{p+\alpha}},
\end{aligned}|t|=r, ~ l
$$

since $r / r^{\prime}<1$. Furthermore*

$$
\left|1-d_{n \nu}\right| \leqq \frac{M_{5} \nu^{p+1}}{n^{p+1}}
$$

consequently

$$
\begin{aligned}
\left|\sum_{\nu=1}^{n}\left(1-d_{n \nu}\right) a_{\nu} t \Re_{\nu}(t)\right| & \leqq M_{1} M_{2} M_{5} \sum_{1}^{n} \frac{\nu^{p+1}}{n^{p+1}}\left(\frac{r}{r^{\prime}}\right)^{\nu} \\
& =\frac{M_{1} M_{2} M_{5}}{n^{p+1}} \sum_{1}^{n} \nu^{p+1}\left(\frac{r}{r^{\prime}}\right)^{\nu}
\end{aligned}
$$

The series on the right converges, and the proof of the theorem is thus complete.

Georgia School of Technology

[^1]
[^0]: * Presented to the Society, December 30, 1937.
 $\dagger f^{(p)}(z)$ denotes the p th derivative of $f(z) ; f^{(0)}(z) \equiv f(z)$.
 $\ddagger f(z)$ satisfies a Lipschitz condition of order α on C if for z_{1} and z_{2} arbitrary points on C we have $\left|f\left(z_{1}\right)-f\left(z_{2}\right)\right| \leqq L\left|z_{1}-z_{2}\right|^{\alpha}$, where L is a constant independent of z_{1} and z_{2}.
 § G. Faber, Mathematische Annalen, vol. 57 (1903), pp. 389-408.
 || Dunham Jackson, Transactions of this Society, vol. 15 (1914), pp. 439-466; p. 463.

 IT This Bulletin, vol. 41 (1935), pp. 111-117; this paper will be referred to hereafter as SI.
 ** This Bulletin, vol. 42 (1936), pp. 873-878.

[^1]: * Dunham Jackson, Transactions of this Society, vol. 15 (1914), pp. 439-466. It should be noted here that Jackson's summation coefficients vary with the derivative but not with the order of the Lipschitz condition.

