$$
\begin{equation*}
K M \equiv 0\left(\bmod 2^{n-1} \cdot 9\right) \tag{11}
\end{equation*}
$$

Conversely (11) implies (9). Since (9) holds for the modulus $2^{n-2} .9 M$, it follows similarly that (11) holds for the modulus $2^{n-2} .9$ with $M=2^{n-4} M_{1}$. Hence (11) will be true for the given modulus if $M=2^{n-3} M_{1}$. This supplies a proof by induction that (8) is a universal form for every $n \geqq 4$.

If, in addition,* M is divisible by every prime p where $3<p \leqq n$, we satisfy the necessary condition given by Dickson \dagger for the form (8) to represent at least one set of n primes. The proof of the sufficiency of this condition still remains a challenge to the ingenuity of number theorists.

New York, N. Y.

RINGS AS GROUPS WITH OPERATORS

C. J. EVERETT, JR.

1. Introduction. A module $M(0, a, b, \cdots)$ is a commutative group, additively written. Every correspondence of M onto itself, or part of itself, such that $a \rightarrow a^{\prime}, b \rightarrow b^{\prime}$ implies $a+b \rightarrow a^{\prime}+b^{\prime}$ defines an endomorphism of M. An endomorphism may be regarded as an operator θ on M subject to the postulates (i) $\theta a=a^{\prime}$ is uniquely defined as an element of M, (ii) $\theta(a+b)=\theta a+\theta b,(a, b \varepsilon M)$. In particular, there exist a null operator $0(0 M=0)$ and a unit operator $\epsilon(\epsilon a=a, a \varepsilon M)$. Designate by Ω_{M} the set of all such operators, $0, \epsilon, \alpha, \beta, \cdots$ It is well known that if operations of \oplus and \odot be defined in Ω_{M} by $(\theta+\eta) a=\theta a+\eta a$ and $(\theta \eta) a=\theta(\eta a),(a \varepsilon M), \Omega_{M}$ forms a ring with unit element ϵ (endomorphism ring of M) \ddagger The equation $\theta=\eta$ means $\theta a=\eta a$ (all $a \in M$). A ring $R(M)$ is called a ring over M in case M is the additive group of $R(M)$. Correspondence of a set P onto a set Q (many-one) is written $P \sim Q$; if specifically one-one, $P \cong Q$. Corresponding operations in P, Q preserved under the map are indicated in parentheses; for example, $P \sim Q(+)$. If a set T has the property that $T P$ is defined in $P, T Q$ in Q, and if, under a correspondence $P \sim Q, p \rightarrow q$ implies $t p \rightarrow t q(t \varepsilon T, p \varepsilon P, q \varepsilon Q)$, we write $P \sim Q(T)$ (T-operator correspondence). If R is a ring, the two-sided ideal N of elements z of R such that $z r=0$ (all $r \varepsilon R$), is called the left annulling ideal of R.

[^0]2. Fundamental theorems. We prove first the following theorem:

Theorem 1. If $R(M)$ is a ring over M, there exists in Ω_{M} a subring Γ such that

$$
R(M) \sim \mathrm{\Gamma}(\oplus, \odot ; \Gamma)
$$

this correspondence being one-one if and only if $N=(0)$ for $R(M)$.*
For $R(M)$ consists of the elements of M on which a multiplication has been defined so that (i) $a b \varepsilon M$, (ii) $a(b+c)=a b+a c$, (iii) $(a+b) c$ $=a c+b c$, (iv) ($a b$) $c=a(b c)$. By (i), every a of M defines a map of M into M which by (ii) is an endomorphism. Hence to every a of M corresponds an operator α of Ω_{M}. Let Γ be the set of all such α, whence $R(M) \sim \Gamma$, where $a \rightarrow \alpha$ is defined by $a g=\alpha g$ (all $g \varepsilon M$). We have that $a+b \rightarrow \alpha+\beta, a b \rightarrow \alpha \beta$ and $\gamma a \rightarrow \gamma \alpha$ from the following:

$$
\begin{aligned}
(a+b) h & =a h+b h=\alpha h+\beta h=(\alpha+\beta) h, & \\
(a b) h & =a(b h)=a(\beta h)=\alpha(\beta h)=(\alpha \beta) h, & \\
(\gamma a) h & =(g a) h=g(a h)=(\gamma \alpha) h, & \text { all } h \varepsilon M .
\end{aligned}
$$

Since, under the correspondence, $N \rightarrow 0$, proof of the theorem is complete.

Theorem 2. If in Ω_{M} there exists a subring Γ such that $M \sim \Gamma(\oplus ; \Gamma)$ then there exists a ring $R(M)$ over M such that

$$
R(M) \sim \Gamma \quad(\oplus, \odot ; \Gamma)
$$

We define $a b=\alpha b$. Then

$$
\begin{align*}
a(b+c) & =\alpha(b+c)=\alpha b+\alpha c=a b+a c \tag{1}\\
(a+b) c & =(\alpha+\beta) c=\alpha c+\beta c=a c+b c \tag{2}\\
(a b) c & =(\alpha b) c=(\alpha \beta) c=\alpha(\beta c)=\alpha(b c)=a(b c) \tag{3}
\end{align*}
$$

and M with this multiplication is a ring $R(M)$. Since $a b=\alpha b \rightarrow \alpha \beta$, the theorem follows.

Corollary. If $M \sim \Gamma(\oplus), \Gamma$ a submodule of Ω_{M}, there exists a (nonassociative) ring $R^{*}(M)$ over M, where ab is defined as $\alpha b,(a \rightarrow \alpha)$.

The relation between associativity of $R(M)$ and the Γ-operator character of the correspondence seems to indicate a point of departure for the study of rings with associativity not assumed.

[^1]3. On linear algebras. Let V be a vector space of n dimensions over a field F. Elements of V satisfy
\[

\left($$
\begin{array}{c}
\alpha_{1} \\
\vdots \\
\alpha_{n}
\end{array}
$$\right)=\left(\alpha_{i}\right)=\sum \alpha_{i} d_{i}, \quad\left(\alpha_{i}\right)+\left(\beta_{i}\right)=\left(\alpha_{i}+\beta_{i}\right), \quad \alpha\left(\alpha_{i}\right)=\left(\alpha \alpha_{i}\right) .
\]

It is well known* that every F-operator endomorphism of $V\left(v \rightarrow v^{\prime}\right.$ implies $\alpha v \rightarrow \alpha v^{\prime}$) is represented by an $n \times n$ matrix over F operating on V. For under such a map, $d_{i} \rightarrow \sum \alpha_{j i} d_{j}$, and

$$
v=\sum \alpha_{i} d_{i} \rightarrow \sum\left(\sum \alpha_{i} \alpha_{i i}\right) d_{i}=A v
$$

where A is the matrix $\left(\alpha_{i j}\right)$. Now a linear associative algebra of order n over the field F is simply a ring $A(V)$ over V subject to the axioms (i) $\alpha(u v)=u(\alpha v)$ and (ii) $\alpha(u v)=(\alpha u) v$. Condition (i) requires that the endomorphism defined by the multiplier u be an F-operator map, that is, $u v=U v$, where U is a matrix of the type just indicated. Hence in the correspondence of Theorem 1, $u \rightarrow U$; and by (ii), $\alpha u \rightarrow \alpha U$, ($\alpha \in F$). Thus

$$
A(V) \sim \Gamma \quad(\oplus, \odot ; \Gamma, F)
$$

where Γ is a subalgebra of the total $n \times n$ matrix algebra \mathscr{H} over F. This correspondence (which is the classical one) is biunique if and only if the left annulling ideal N of $A(V)$ is (0), a much weaker condition than the possession of unit element usually required. The Γ operator property of the correspondence is significant in the light of the following remark, which is in part a result of Theorem 2:

If $V \sim \Gamma(\oplus ; \Gamma, F), \Gamma$ any subalgebra of \mathscr{H}, then there exists an algebra $A(V)$ over V such that

$$
A(V) \sim \Gamma \quad(\oplus, \odot ; \Gamma, F)
$$

That not every matrix representation of an algebra possesses the Γ-operator property is evinced by the example

$$
A(V):\binom{\alpha_{1}}{\alpha_{2}},\binom{\alpha_{1}}{\alpha_{2}}\binom{\beta_{1}}{\beta_{2}}=\left(\begin{array}{ll}
\alpha_{1} & \beta_{1} \\
\alpha_{1} & \beta_{2}
\end{array}\right)
$$

for

$$
\binom{\beta_{1}}{\beta_{2}} \cong\left(\begin{array}{ll}
\beta_{1} & \beta_{2} \\
0 & 0
\end{array}\right)(\oplus, \odot)
$$

but the relation

[^2]\[

\left($$
\begin{array}{cc}
\alpha_{1} & \alpha_{2} \\
0 & 0
\end{array}
$$\right)\binom{\beta_{1}}{\beta_{2}} \rightarrow\left($$
\begin{array}{ll}
\alpha_{1} & \alpha_{2} \\
0 & 0
\end{array}
$$\right)\left($$
\begin{array}{cc}
\beta_{1} & \beta_{2} \\
0 & 0
\end{array}
$$\right)
\]

does not hold. However

$$
\binom{\beta_{1}}{\beta_{2}} \sim \Gamma \equiv\left(\begin{array}{cc}
\beta_{1} & 0 \\
0 & \beta_{1}
\end{array}\right)(\oplus, \odot ; \Gamma)
$$

4. Reduction theorems for finite rings. Let M be a module of order $m=p_{1}{ }^{a_{1}} \cdots p_{n}{ }^{a_{n}}$. Then $M=B_{1}+\cdots+B_{n}$ is a direct sum, B_{i} of order $p_{i}{ }^{a_{i}}$, containing all elements of period dividing $p_{i}{ }^{a_{i}}$. Moreover, $B_{i}=C_{i 1}+\cdots+C_{i l_{i}}$, where $C_{i j}$ is cyclic of order $p_{i}{ }^{b_{i j}}, \sum_{j=1}^{l_{i}} b_{i j}=a_{i}$. The endomorphism ring Ω_{M} of M is a direct sum of endomorphism rings of the B_{i} :

$$
\Omega_{M}=\Omega_{1}+\cdots+\Omega_{n}
$$

Ω_{i} a two-sided ideal in $\Omega_{M}, \Omega_{i} \cap \Omega_{j}=\delta_{i j} \Omega_{j}, \Omega_{i} \Omega_{j}=\delta_{i j} \Omega_{i}{ }^{2}$. Further, if $B=C_{1}+\cdots+C_{l}, C_{j}$ of order $p^{b_{j}}$, be represented as a vector space

$$
\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{l}
\end{array}\right), \quad x_{j}\left(\bmod p^{b_{j}}\right), \quad b_{1} \leqq \cdots \leqq b_{l}
$$

then Ω_{B} may be represented* by the ring of all matrices $\left(\beta_{j k}\right)$ $=\left(\alpha_{j k} p^{b_{j}-b_{k}}\right), p^{b_{j}-b_{k}}$ defined as 1 for $j<k, \beta_{j k}$ reduced $\left(\bmod p^{b_{j}}\right)$. Thus if M is represented as a vector space, Ω_{M} is a ring of matrices with blocks along the diagonal, the Ω_{i}-blocks having the ($\beta_{j k}$) structure described. \dagger

Theorem 3. If $M \sim \Gamma \subset \Omega_{M}(\oplus ; \Gamma)$, then $\Gamma=\Gamma_{1}+\cdots+\Gamma_{n}$, a direct sum of two-sided ideals in Γ, and

$$
B_{i} \sim \Gamma_{i} \subset \Omega_{i}\left(\oplus ; \Gamma_{i}\right)
$$

Let Γ_{i} be the map of B_{i}. Then Γ_{i} is a two-sided ideal in Γ, and every $\gamma \varepsilon \Gamma$ is a sum of $\gamma_{i} \varepsilon \Gamma_{i}$. Moreover $\Gamma_{i} \subset \Omega_{i}$. For let $b_{i} \rightarrow \lambda_{i} \varepsilon \Gamma_{i}$, $\left(\lambda_{i}=\left(\theta_{1}+\cdots+\theta_{n}\right), \theta_{i} \varepsilon \Omega_{i}\right)$. Since $b_{i} \varepsilon B_{i}$,

$$
p_{i}^{a_{i}} b_{i}=0 \rightarrow p_{i}^{a_{i}}\left(\theta_{1}+\cdots+\theta_{n}\right)=0
$$

Hence $p_{i}{ }^{a_{i}} \theta_{j}=0,(j=1, \cdots, n)$. From the structure of Ω_{i} already indicated, $\theta_{j}=0,(j \neq i)$. Thus Γ is a direct sum.

[^3]Theorem 4. If $M=B_{1}+\cdots+B_{n}, B_{i} \sim \Gamma_{i}\left(\oplus ; \Gamma_{i}\right), \Gamma_{i}$ a subring of Ω_{i}, then $\Gamma=\Gamma_{1}+\cdots+\Gamma_{n}$ is direct, Γ_{i} a two-sided ideal in Γ, and

$$
M \sim \Gamma \subset \Omega_{M}(\oplus ; \Gamma)
$$

Since $\Gamma_{i} \subset \Omega_{i}, \Gamma$ is a direct sum, and Γ_{i} is a two-sided ideal in Γ. Define $M \sim \Gamma$ by $m=b_{1}+\cdots+b_{n} \rightarrow \gamma_{1}+\cdots+\gamma_{n}$ (where $b_{i} \rightarrow \gamma_{i}$). Then addition is preserved. Let $\rho \varepsilon \Gamma, \rho=\mu_{1}+\cdots+\mu_{n},\left(\mu_{i} \varepsilon \Gamma_{i}\right)$. Then

$$
\begin{aligned}
\rho m & =\rho b_{1}+\cdots+\rho b_{n}=\mu_{1} b_{1}+\cdots+\mu_{n} b_{n} \rightarrow \mu_{1} \gamma_{1}+\cdots+\mu_{n} \gamma_{n} \\
& =\left(\mu_{1}+\cdots+\mu_{n}\right)\left(\gamma_{1}+\cdots+\gamma_{n}\right)
\end{aligned}
$$

Theorem 5. Every ring over $M=B_{1}+\cdots+B_{n}$ is a direct sum of rings over the B_{i}; hence to construct all rings over M it is only necessary to construct all rings over the B_{i}.
5. On elementary modules. M is said to be elementary in case there exists an isomorphism

$$
M \cong \Omega_{M}\left(\oplus ; \Omega_{M}\right)
$$

Theorem 6. M is elementary if and only if there exists a ring with unit element, $R(M)$ over M, such that every endomorphism of M is defined by a left multiplier of $R(M)$.

For if M is elementary, there exists a ring $R(M)$ such that

$$
R(M) \cong \Omega_{M}\left(\oplus, \odot ; \Omega_{M}\right)
$$

where $a b$ is defined as $\alpha b,(a \longleftarrow \longrightarrow \alpha)$. Let $m \rightarrow \theta m$ be an endomorphism of M. In the above isomorphism let $t \longleftrightarrow \rightarrow$. Then $t m=\theta m$, $(t \in R(M)$). Conversely, if $R(M)$ is of this type,

$$
R(M) \cong \Gamma \subset \Omega_{M}(\oplus, \odot ; \Gamma)
$$

and if one assumes $\theta \varepsilon \Omega_{M}$, there exists a $t \varepsilon R(M)$ such that $t a=\theta a$, ($a \varepsilon M$). Hence $\theta \varepsilon \Gamma$ and $\Gamma=\Omega_{M}$; whence M is elementary.

Corollary. The modules of rational numbers, and of rational integers C (the infinite cyclic group) are elementary.

For it is readily shown that the only solution of the functional equation $\Phi=(a+b)=\Phi(a)+\Phi(b)$ in the field of rationals and the ring of integers is of the type $\Phi(a)=r a$ where r is a multiplier of the domain.

Corollary. The only rings $R(C)$ over C are given by the multiplication $a \cdot b$, defined as any fixed positive integral multiple of the ordinary product $a b$ in the ring of rational integers.

To define a ring $R(C)$ we must obtain a homomorphism

$$
C \sim \Gamma(\oplus ; \Gamma)
$$

where Γ is a subring of Ω_{c}, setting $a \cdot b=\alpha b(a \rightarrow \alpha)$. But Ω_{c} is the ordinary ring of rational integers, its only subrings being principal ideals $\{m\}$. Hence we must have

$$
C \sim\{m\}(\oplus ;\{m\})
$$

where $1 \rightarrow m, a \rightarrow m a$.
Theorem 7. If M is elementary, the units of Ω_{M} are in the centrum of Ω_{M}.*

For the endomorphism $\sigma^{-1} \Omega_{M} \sigma$ of the additive group of Ω_{M} (σ a unit) must be defined by a ring multiplier $\rho: \sigma^{-1} \Omega_{M} \sigma=\rho \Omega_{M}$. Then in particular $\sigma^{-1} \epsilon \sigma=\rho \epsilon$ and $\rho=\epsilon$.

Corollary. A vector space V of order greater than or equal to 2 is not elementary.

For there always exist nonsingular matrices not commutative with the total matrix algebra, and hence not in the centrum of Ω_{v}.

Theorem 8. A finite module M is elementary if and only if it is cyclic.
For a cyclic M, Ω_{M} is represented by the $n \times n$ matrices ($\delta_{i j} \alpha_{j}$), α_{j} $\left(\bmod p_{i}{ }^{a_{i}}\right)$. Hence under

$$
\left(\begin{array}{c}
\alpha_{1} \\
\vdots \\
\alpha_{n}
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
\alpha_{n} & & 0 \\
& \ddots & \\
0 & & \\
\alpha_{n}
\end{array}\right),
$$

M is elementary. If there are repeated primes in the type of M, then the order of Ω_{M} is greater than that of M and M is not elementary (see §4).

Thus the rings $R(M)$ over elementary finite M are completely known, $\left(\alpha_{i}\right)\left(\beta_{i}\right)$ being defined as ($\left.\gamma_{i} \alpha_{i} \beta_{i}\right),\left(0 \leqq \gamma_{i}<p_{i}^{a_{i}}\right)$.

University of Wisconsin

[^4]
[^0]: * For example, replace $6 M$ in (8) by $2^{w} n!M$, ($w \geqq n-3$).
 \dagger Loc. cit., p. 156.
 \ddagger van der Waerden, Moderne Algebra, vol. 1, 2d edition, p. 146.

[^1]: * In case $N \neq(0)$, there exists a ring $R_{1} \supset R$ for which $N_{1}=(0)$; thus R is always isomorphic with a subring of the endomorphism ring of some module. See, for example, A. A. Albert, Modern Higher Algebra, University of Chicago Press, 1937, p. 22, Theorem 5.

[^2]: * See van der Waerden, loc. cit., vol. 2, p. 111.

[^3]: * K. Shoda, Über die Automorphismen einer endlichen Abelschen Gruppe, Mathematische Annalen, vol. 100 (1928), p. 676.
 \dagger Note that B is admissible relative to Ω_{M}, that is, $\Omega_{M} B_{i} \subset B_{i}$.

[^4]: * A stronger theorem holds: If M is elementary, its endomorphism ring is commutative.

