(11)
$$KM \equiv 0 \pmod{2^{n-1} \cdot 9}.$$

Conversely (11) implies (9). Since (9) holds for the modulus $2^{n-2} \cdot 9M$, it follows similarly that (11) holds for the modulus $2^{n-2} \cdot 9$ with $M = 2^{n-4}M_1$. Hence (11) will be true for the given modulus if $M = 2^{n-3}M_1$. This supplies a proof by induction that (8) is a universal form for every $n \ge 4$.

If, in addition,* M is divisible by every prime p where 3 , we satisfy the necessary condition given by Dickson† for the form (8) to represent at least one set of <math>n primes. The proof of the sufficiency of this condition still remains a challenge to the ingenuity of number theorists.

NEW YORK, N. Y.

RINGS AS GROUPS WITH OPERATORS

C. J. EVERETT, JR.

1. Introduction. A module M (0, a, b, \cdots) is a commutative group, additively written. Every correspondence of M onto itself, or part of itself, such that $a \rightarrow a'$, $b \rightarrow b'$ implies $a + b \rightarrow a' + b'$ defines an endomorphism of M. An endomorphism may be regarded as an operator θ on M subject to the postulates (i) $\theta a = a'$ is uniquely defined as an element of M, (ii) $\theta(a+b) = \theta a + \theta b$, $(a, b \in M)$. In particular, there exist a null operator 0 (0M = 0) and a unit operator ϵ ($\epsilon a = a, a \epsilon M$). Designate by Ω_M the set of all such operators, $0, \epsilon, \alpha, \beta, \cdots$. It is well known that if operations of \oplus and \odot be defined in Ω_M by $(\theta + \eta)a = \theta a + \eta a$ and $(\theta \eta)a = \theta(\eta a)$, $(a \in M)$, Ω_M forms a ring with unit element ϵ (endomorphism ring of M).[‡] The equation $\theta = \eta$ means $\theta a = \eta a$ (all $a \in M$). A ring R(M) is called a ring over M in case M is the additive group of R(M). Correspondence of a set P onto a set Q (many-one) is written $P \sim Q$; if specifically one-one, $P \cong Q$. Corresponding operations in P, Q preserved under the map are indicated in parentheses; for example, $P \sim O(+)$. If a set T has the property that TP is defined in P, TQ in Q, and if, under a correspondence $P \sim Q, \ p \rightarrow q \text{ implies } tp \rightarrow tq \ (t \in T, \ p \in P, \ q \in Q), \text{ we write } P \sim Q \ (T)$ (T-operator correspondence). If R is a ring, the two-sided ideal N of elements z of R such that zr = 0 (all $r \in R$), is called the left annulling ideal of R.

274

^{*} For example, replace 6M in (8) by $2^{w}n!M$, $(w \ge n-3)$.

[†] Loc. cit., p. 156.

[‡] van der Waerden, Moderne Algebra, vol. 1, 2d edition, p. 146.

2. Fundamental theorems. We prove first the following theorem:

THEOREM 1. If R(M) is a ring over M, there exists in Ω_M a subring Γ such that

$$R(M) \sim \Gamma \ (\oplus, \odot; \Gamma),$$

this correspondence being one-one if and only if N = (0) for R(M).*

For R(M) consists of the elements of M on which a multiplication has been defined so that (i) $ab \in M$, (ii) a(b+c) = ab + ac, (iii) (a+b)c = ac+bc, (iv) (ab)c = a(bc). By (i), every a of M defines a map of Minto M which by (ii) is an endomorphism. Hence to every a of M corresponds an operator α of Ω_M . Let Γ be the set of all such α , whence $R(M) \sim \Gamma$, where $a \rightarrow \alpha$ is defined by $ag = \alpha g$ (all $g \in M$). We have that $a+b\rightarrow \alpha+\beta$, $ab\rightarrow \alpha\beta$ and $\gamma a\rightarrow \gamma\alpha$ from the following:

$$a + b)h = ah + bh = \alpha h + \beta h = (\alpha + \beta)h,$$

$$(ab)h = a(bh) = a(\beta h) = \alpha(\beta h) = (\alpha\beta)h,$$

$$(\gamma a)h = (ga)h = g(ah) = (\gamma\alpha)h,$$
 all $h \in M$.

Since, under the correspondence, $N \rightarrow 0$, proof of the theorem is complete.

THEOREM 2. If in Ω_M there exists a subring Γ such that $M \sim \Gamma(\oplus; \Gamma)$ then there exists a ring R(M) over M such that

$$R(M) \sim \Gamma \quad (\oplus, \odot; \Gamma).$$

We define $ab = \alpha b$. Then

(

(1)
$$a(b+c) = \alpha(b+c) = \alpha b + \alpha c = ab + ac,$$

(2) $(a+b)c = (\alpha + \beta)c = \alpha c + \beta c = ac + bc,$

(3)
$$(ab)c = (\alpha b)c = (\alpha \beta)c = \alpha(\beta c) = \alpha(bc) = a(bc),$$

and *M* with this multiplication is a ring R(M). Since $ab = \alpha b \rightarrow \alpha \beta$, the theorem follows.

COROLLARY. If $M \sim \Gamma(\oplus)$, Γ a submodule of Ω_M , there exists a (nonassociative) ring $R^*(M)$ over M, where ab is defined as αb , $(a \rightarrow \alpha)$.

The relation between associativity of R(M) and the Γ -operator character of the correspondence seems to indicate a point of departure for the study of rings with associativity not assumed.

^{*} In case $N \neq (0)$, there exists a ring $R_1 \supset R$ for which $N_1 = (0)$; thus R is always isomorphic with a subring of the endomorphism ring of some module. See, for example, A. A. Albert, *Modern Higher Algebra*, University of Chicago Press, 1937, p. 22, Theorem 5.

3. On linear algebras. Let V be a vector space of n dimensions over a field F. Elements of V satisfy

$$\begin{pmatrix} \alpha_1 \\ \vdots \\ \vdots \\ \alpha_n \end{pmatrix} = (\alpha_i) = \sum \alpha_i d_i, \quad (\alpha_i) + (\beta_i) = (\alpha_i + \beta_i), \quad \alpha(\alpha_i) = (\alpha \alpha_i).$$

It is well known* that every F-operator endomorphism of $V(v \rightarrow v')$ implies $\alpha v \rightarrow \alpha v'$ is represented by an $n \times n$ matrix over F operating on V. For under such a map, $d_i \rightarrow \sum \alpha_{ji} d_j$, and

$$v = \sum \alpha_i d_i \rightarrow \sum (\sum \alpha_i \alpha_{ji}) d_j = Av,$$

where A is the matrix (α_{ij}) . Now a linear associative algebra of order *n* over the field F is simply a ring A(V) over V subject to the axioms (i) $\alpha(uv) = u(\alpha v)$ and (ii) $\alpha(uv) = (\alpha u)v$. Condition (i) requires that the endomorphism defined by the multiplier u be an F-operator map, that is, uv = Uv, where U is a matrix of the type just indicated. Hence in the correspondence of Theorem 1, $u \rightarrow U$; and by (ii), $\alpha u \rightarrow \alpha U$, $(\alpha \in F)$. Thus

$$A(V) \sim \Gamma \quad (\oplus, \odot; \Gamma, F)$$

where Γ is a subalgebra of the total $n \times n$ matrix algebra \mathcal{M} over F. This correspondence (which is the classical one) is biunique if and only if the left annulling ideal N of A(V) is (0), a much weaker condition than the possession of unit element usually required. The Γ operator property of the correspondence is significant in the light of the following remark, which is in part a result of Theorem 2:

If $V \sim \Gamma(\oplus; \Gamma, F)$, Γ any subalgebra of \mathcal{M} , then there exists an algebra A(V) over V such that

$$A(V) \sim \Gamma \ (\oplus, \odot; \Gamma, F).$$

That not every matrix representation of an algebra possesses the Γ -operator property is evinced by the example

$$A(V): \ \begin{pmatrix} \alpha_1 \\ \alpha_2 \end{pmatrix}, \ \begin{pmatrix} \alpha_1 \\ \alpha_2 \end{pmatrix} \begin{pmatrix} \beta_1 \\ \beta_2 \end{pmatrix} = \begin{pmatrix} \alpha_1 & \beta_1 \\ \alpha_1 & \beta_2 \end{pmatrix},$$

for

$$\binom{\beta_1}{\beta_2} \cong \binom{\beta_1 \ \beta_2}{0 \ 0} \ (\oplus, \odot)$$

but the relation

* See van der Waerden, loc. cit., vol. 2, p. 111.

$$\begin{pmatrix} \alpha_1 & \alpha_2 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} \beta_1 \\ \beta_2 \end{pmatrix} \rightarrow \begin{pmatrix} \alpha_1 & \alpha_2 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} \beta_1 & \beta_2 \\ 0 & 0 \end{pmatrix}$$

does not hold. However

$$\binom{\beta_1}{\beta_2} \sim \Gamma \equiv \binom{\beta_1 \ 0}{0 \ \beta_1} \ (\oplus, \odot; \Gamma).$$

4. Reduction theorems for finite rings. Let M be a module of order $m = p_1^{a_1} \cdots p_n^{a_n}$. Then $M = B_1 + \cdots + B_n$ is a direct sum, B_i of order $p_i^{a_i}$, containing all elements of period dividing $p_i^{a_i}$. Moreover, $B_i = C_{i1} + \cdots + C_{il_i}$, where C_{ij} is cyclic of order $p_i^{b_{ij}}$, $\sum_{j=1}^{l_i} b_{ij} = a_i$. The endomorphism ring Ω_M of M is a direct sum of endomorphism rings of the B_i :

$$\Omega_M = \Omega_1 + \cdots + \Omega_n,$$

 Ω_i a two-sided ideal in Ω_M , $\Omega_i \cap \Omega_j = \delta_{ij}\Omega_j$, $\Omega_i\Omega_j = \delta_{ij}\Omega_i^2$. Further, if $B = C_1 + \cdots + C_l$, C_j of order p^{b_j} , be represented as a vector space

$$\begin{pmatrix} x_1 \\ \vdots \\ \vdots \\ x_l \end{pmatrix}, x_j \pmod{p^{b_j}}, b_1 \leq \cdots \leq b_l,$$

then Ω_B may be represented* by the ring of all matrices $(\beta_{jk}) = (\alpha_{jk}p^{b_j-b_k}), p^{b_j-b_k}$ defined as 1 for $j < k, \beta_{jk}$ reduced (mod p^{b_j}). Thus if M is represented as a vector space, Ω_M is a ring of matrices with blocks along the diagonal, the Ω_i -blocks having the (β_{jk}) structure described.[†]

THEOREM 3. If $M \sim \Gamma \subset \Omega_M$ (\oplus ; Γ), then $\Gamma = \Gamma_1 + \cdots + \Gamma_n$, a direct sum of two-sided ideals in Γ , and

$$B_i \sim \Gamma_i \subset \Omega_i \ (\oplus; \Gamma_i).$$

Let Γ_i be the map of B_i . Then Γ_i is a two-sided ideal in Γ , and every $\gamma \in \Gamma$ is a sum of $\gamma_i \in \Gamma_i$. Moreover $\Gamma_i \subset \Omega_i$. For let $b_i \rightarrow \lambda_i \in \Gamma_i$, $(\lambda_i = (\theta_1 + \cdots + \theta_n), \theta_i \in \Omega_i)$. Since $b_i \in B_i$,

$$p_i^{a_i}b_i = 0 \longrightarrow p_i^{a_i}(\theta_1 + \cdots + \theta_n) = 0.$$

Hence $p_i^{a_i}\theta_j = 0$, $(j = 1, \dots, n)$. From the structure of Ω_i already indicated, $\theta_j = 0$, $(j \neq i)$. Thus Γ is a direct sum.

1939]

^{*} K. Shoda, Über die Automorphismen einer endlichen Abelschen Gruppe, Mathematische Annalen, vol. 100 (1928), p. 676.

[†] Note that B is admissible relative to Ω_M , that is, $\Omega_M B_i \subset B_i$.

THEOREM 4. If $M = B_1 + \cdots + B_n$, $B_i \sim \Gamma_i$ (\oplus ; Γ_i), Γ_i a subring of Ω_i , then $\Gamma = \Gamma_1 + \cdots + \Gamma_n$ is direct, Γ_i a two-sided ideal in Γ , and

 $M \sim \Gamma \subset \Omega_M (\oplus; \Gamma).$

Since $\Gamma_i \subset \Omega_i$, Γ is a direct sum, and Γ_i is a two-sided ideal in Γ . Define $M \sim \Gamma$ by $m = b_1 + \cdots + b_n \rightarrow \gamma_1 + \cdots + \gamma_n$ (where $b_i \rightarrow \gamma_i$). Then addition is preserved. Let $\rho \in \Gamma$, $\rho = \mu_1 + \cdots + \mu_n$, $(\mu_i \in \Gamma_i)$. Then

$$\rho m = \rho b_1 + \cdots + \rho b_n = \mu_1 b_1 + \cdots + \mu_n b_n \longrightarrow \mu_1 \gamma_1 + \cdots + \mu_n \gamma_n$$

= $(\mu_1 + \cdots + \mu_n)(\gamma_1 + \cdots + \gamma_n).$

THEOREM 5. Every ring over $M = B_1 + \cdots + B_n$ is a direct sum of rings over the B_i ; hence to construct all rings over M it is only necessary to construct all rings over the B_i .

5. On elementary modules. M is said to be elementary in case there exists an isomorphism

$$M\cong\Omega_M\ (\oplus;\Omega_M).$$

THEOREM 6. M is elementary if and only if there exists a ring with unit element, R(M) over M, such that every endomorphism of M is defined by a left multiplier of R(M).

For if M is elementary, there exists a ring R(M) such that

$$R(M) \cong \Omega_M (\oplus, \odot; \Omega_M)$$

where ab is defined as αb , $(a \leftarrow \rightarrow \alpha)$. Let $m \rightarrow \theta m$ be an endomorphism of M. In the above isomorphism let $t \leftarrow \rightarrow \theta$. Then $tm = \theta m$, $(t \in R(M))$. Conversely, if R(M) is of this type,

$$R(M) \cong \Gamma \subset \Omega_M \ (\oplus, \odot; \Gamma),$$

and if one assumes $\theta \in \Omega_M$, there exists a $t \in R(M)$ such that $ta = \theta a$, $(a \in M)$. Hence $\theta \in \Gamma$ and $\Gamma = \Omega_M$; whence M is elementary.

COROLLARY. The modules of rational numbers, and of rational integers C (the infinite cyclic group) are elementary.

For it is readily shown that the only solution of the functional equation $\Phi = (a+b) = \Phi(a) + \Phi(b)$ in the field of rationals and the ring of integers is of the type $\Phi(a) = ra$ where r is a multiplier of the domain.

COROLLARY. The only rings R(C) over C are given by the multiplication $a \cdot b$, defined as any fixed positive integral multiple of the ordinary product ab in the ring of rational integers.

278

To define a ring R(C) we must obtain a homomorphism

 $C \sim \Gamma \ (\oplus; \Gamma)$

where Γ is a subring of Ω_C , setting $a \cdot b = \alpha b$ $(a \rightarrow \alpha)$. But Ω_C is the ordinary ring of rational integers, its only subrings being principal ideals $\{m\}$. Hence we must have

$$C \sim \{m\} \ (\oplus; \{m\})$$

where $1 \rightarrow m, a \rightarrow ma$.

THEOREM 7. If M is elementary, the units of Ω_M are in the centrum of Ω_M .*

For the endomorphism $\sigma^{-1}\Omega_M\sigma$ of the additive group of Ω_M (σ a unit) must be defined by a ring multiplier $\rho: \sigma^{-1}\Omega_M\sigma = \rho\Omega_M$. Then in particular $\sigma^{-1}\epsilon\sigma = \rho\epsilon$ and $\rho = \epsilon$.

COROLLARY. A vector space V of order greater than or equal to 2 is not elementary.

For there always exist nonsingular matrices not commutative with the total matrix algebra, and hence not in the centrum of Ω_V .

THEOREM 8. A finite module M is elementary if and only if it is cyclic.

For a cyclic M, Ω_M is represented by the $n \times n$ matrices $(\delta_{ij}\alpha_j)$, $\alpha_j \pmod{p_j^{\alpha_j}}$. Hence under

$$\begin{pmatrix} \alpha_1 \\ \vdots \\ \vdots \\ \alpha_n \end{pmatrix} \rightarrow \begin{pmatrix} \alpha_1 & 0 \\ \vdots \\ 0 & \ddots \\ 0 & \alpha_n \end{pmatrix},$$

M is elementary. If there are repeated primes in the type of M, then the order of Ω_M is greater than that of M and M is not elementary (see §4).

Thus the rings R(M) over elementary finite M are completely known, $(\alpha_i)(\beta_i)$ being defined as $(\gamma_i \alpha_i \beta_i)$, $(0 \leq \gamma_i < p_i^{a_i})$.

UNIVERSITY OF WISCONSIN

1939]

^{*} A stronger theorem holds: If M is elementary, its endomorphism ring is commutative.