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(11) KM s 0 (mod 2*-1-9). 

Conversely (11) implies (9). Since (9) holds for the modulus 2n_2-9ikf, 
it follows similarly that (11) holds for the modulus 2n~2-9 with 
ikf = 2n-4ikfi. Hence (11) will be true for the given modulus if 
M = 2n~zM\. This supplies a proof by induction that (8) is a universal 
form for every w ^ 4 . 

If, in addition,* ikf is divisible by every prime p where 3<p^n, 
we satisfy the necessary condition given by Dickson f for the form 
(8) to represent at least one set of n primes. The proof of the suffi
ciency of this condition still remains a challenge to the ingenuity of 
number theorists. 
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1. Introduction. A module M (0, a, & , • • • ) is a commutative 
group, additively written. Every correspondence of ikf onto itself, or 
part of itself, such that a—*a', b-^bf implies a + b—>a' + b' defines an 
endomorphism of ikf. An endomorphism may be regarded as an opera
tor 6 on ikf subject to the postulates (i) da = a' is uniquely defined as 
an element of ikf, (ii) 6(a+b) =da+db, (a, b t M). In particular, there 
exist a null operator 0 (Oikf = 0) and a unit operator e (ea = a, a e ikf). 
Designate by 12M the set of all such operators, 0, e, a, ]8, • • • . It is 
well known that if operations of © and O be defined in &M by 
(d+r})a = 6a + rja and (dr})a = 6(rja), (a e ikf), QM forms a ring with unit 
element e {endomorphism ring of M).% The equation d — rj means 
6a = 7ja (all a e ikf). A ring R{M) is called a ring over M in case ikf is 
the additive group of R(M). Correspondence of a set P onto a set Q 
(many-one) is written P~Q; if specifically one-one, P~Q. Corre
sponding operations in P , Q preserved under the map are indicated 
in parentheses; for example, P~Q ( + ). If a set T has the property 
that TP is defined in P , TQ in Q, and if, under a correspondence 
P~Q, p—*g. implies tp—>tq (t e T, p e P , q t Ç), we write P~Q (T) 
(P-operator correspondence). If R is a ring, the two-sided ideal N of 
elements z of R such that zr = 0 (all r t R), is called the left annulling 
ideal of R. 

* For example, replace 6M in (8) by 2wn\M, (w^n—3). 
f Loc. cit., p. 156. 
t van der Waerden, Moderne Algebra, vol. 1, 2d edition, p. 146. 
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2. Fundamental theorems. We prove first the following theorem: 

THEOREM 1. If R(M) is a ring over M, there exists in OM a subringT 
such that 

R(M)~r (e, o;r), 
this correspondence being one-one if and only if N=(0) for R(M).* 

For R{M) consists of the elements of M on which a multiplication 
has been defined so that (i) ab e M, (ii) a(b+c) = ab+ac, (iii) (a + b)c 
= ac + bc, (iv) (ab)c = a(bc). By (i), every a of M defines a map of M 
into M which by (ii) is an endomorphism. Hence to every a of M cor
responds an operator a of OM. Let Y be the set of all such a, whence 
R{M)~Y, where a—>a is defined by ag=ag (all g e M). We have that 
a + b—->ce+/3, ab—>aft and ya—rya from the following: 

(a + b)h = ah + bh = ah + ph = (a + 0)A, 

(ab)h = a(bh) = atfh) = a(ph) = (ap)h, 

(ya)h = (ga)h — g{ah) = (ya)h, all & e M, 

Since, under the correspondence, iV—>0, proof of the theorem is com
plete. 

THEOREM 2. If in &M there exists a subring Y such that M~Y ( © ; Y) 
then there exists a ring R(M) over M such that 

R(M)~Y (©, 0 ; T ) . 

We define ab=ab. Then 

(1) a(b + c) = a(b + c) = ab + ac = ab + a£, 

(2) (a + &)c = (a + 0)c = ac + 0c = ac + be, 

(3) (ai)c = (aJ)c = (a/3)c = a(fic) = a(fc) = a(ftc), 

and Af with this multiplication is a ring R(M). Since a& — ab—>a/3, the 
theorem follows. 

COROLLARY, /ƒ ik f~r (©) , T a submodule of OM, /A«f« #m/$ a («<w-
associative) ring R*(M) over M, where ab is defined as ab, (a—>a). 

The relation between associativity of R(M) and the T-operator 
character of the correspondence seems to indicate a point of departure 
for the study of rings with associativity not assumed. 

* In case i W ( 0 ) , there exists a ring RiD R for which iVi = (0); thus R is always 
isomorphic with a subring of the endomorphism ring of some module. See, for example, 
A. A. Albert, Modern Higher Algebra, University of Chicago Press, 1937, p. 22, 
Theorem 5. 
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3. On linear algebras. Let F be a vector space of n dimensions 
over a field F. Elements of V satisfy 

( ' ) = («<) = E « A , («<) + (ft) = («< + ft), o(«<) = (««<)• 

I t is well known* that every J^-operator endomorphism of V (v—>v' 
implies av—>av') is represented by an nXn matrix over F operating 
on V. For under such a map, di—>X)cey^/> a n d 

v = ]C «<d< —> X) (X) 0Li<Xii)dj = Av, 

where 4̂ is the matrix (a»-,-). Now a linear associative algebra of order 
n over the field F is simply a ring A(V) over F subject to the axioms 
(i) a(uv) = u(av) and (ii) a(uv) = (au)v. Condition (i) requires that the 
endomorphism defined by the multiplier u be an F-operator map, 
that is, uv — Uvj where U is a matrix of the type just indicated. Hence 
in the correspondence of Theorem 1, u—>U; and by (ii), au—xxU, 
(at F). Thus 

A(V)~ V ( 0 , 0]T,F) 

where T is a subalgebra of the total nXn matrix algebra 'M over F. 
This correspondence (which is the classical one) is biunique if and 
only if the left annulling ideal N of A(V) is (0), a much weaker con
dition than the possession of unit element usually required. The T-
operator property of the correspondence is significant in the light of 
the following remark, which is in part a result of Theorem 2 : 

If V~T (© ; T, F), T any subalgebra ofVtf, then there exists an alge-
bra A(V) over V such that 

A(V)~T ( 0 , 0 ; r , F ) . 

Tha t not every matrix representation of an algebra possesses the 
T-operator property is evinced by the example 

«*&• oc;)=(::;)• 
for 

but the relation 

* See van der Waerden, loc. cit., vol. 2, p. 111. 
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/ « ! a2 \ /j3A _^ /ax a2 \ / f t /82\ 

\ 0 0 / W \ 0 0 / \ 0 0 / 

does not hold. However 

4. Reduction theorems for finite rings. Let I f be a module of order 
m = pial • • • pn

an. Then M = Bi + • • • +Bn is a direct sum, B{ of 
order £; a \ containing all elements of period dividing pf*. Moreover, 
Bi=*Cn+ • • • +Cnv where C%j is cyclic of order pp", ^2ji1bij = ai. 
The endomorphism ring OM of M is a direct sum of endomorphism 
rings of the B{\ 

&M = Oi + • • • + 0W, 

0» a two-sided ideal in 12M, Q* 0 0,-=8»-,-Q/, Qt-Qjr= ô^Û*2. Further, if 
5 = Ci + • • • + Cu Cj of order ph\ be represented as a vector space 

A 
I • 1, Xj (mod ^&0, biS • • - Sh, 

\x/ 
then Q5 may be represented* by the ring of all matrices (/3j&) 
= (<X3kpbi~H), phi~hk defined as 1 for j<k, 13jk reduced (mod ph*). Thus 
if M is represented as a vector space, &M is a ring of matrices with 
blocks along the diagonal, the IVblocks having the {fijk) structure de
scribed, f 

THEOREM 3. If M~T c ftM ( 0 ; T), then Y = T i + • • • + r n , a direct 
sum of two-sided ideals in I \ and 

Bi^YiCLÜi ( ® ; I \ ) . 

Let T{ be the map of Bi. Then I \ is a two-sided ideal in T, and 
every y t T is a sum of 7* £ IV Moreover I \ c Qi# For let 6»—>X< e I \ , 
(A* = (0i + • • • +0n),0<eO<).Since6,-e.B<, 

fr'i< = O->*?'(0i + • ' ' +0n) = 0. 

Hence piai6j = Qy (j = l, • • • , n). From the structure of Q* already in
dicated, Bj = 0, (j^i). Thus T is a direct sum. 

* K. Shoda, J/fer tó Automorphismen einer endlichen Abelschen Gruppe, Mathe
matische Annalen, vol. 100 (1928), p. 676. 

t Note tha t B is admissible relative to &M, tha t is, tijifBiC B{. 
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THEOREM 4. If Af = JBi+ • • • +Bn, Bi~Ti ( 0 ; I \ ) , I \ a subring 
of O», then r = T i + • • • + T n is direct, I \ a two-sided ideal in T, and 

M ~TctiM ( 0 ; T). 

Since I \ c Qiy T is a direct sum, and Ti is a two-sided ideal in I \ 
Define M~Y by ra = &i + • • • +&„—>Yi+ • • • +yn (where &»—»7»). 
Then addition is preserved. Let p e T, p=jui + * * * +Mw, (M* £ I\-). 
Then 

pW = pbi + ' • • + pbn = Ml^l + * * " + Vnbn —> MlYl + • • • + MnYn 

= (Ml + • • • + Mn)(7l + ' * * + 7n) • 

THEOREM 5. Every ring over M = Bi+ • • • + 5 W w a dira;/ ^wm o/ 
ri^gs 0zw the Bi; hence to construct all rings over M it is only necessary 
to construct all rings over the Bi. 

5. On elementary modules. M is said to be elementary in case there 
exists an isomorphism 

M ^2M ( 0 ; M . 

THEOREM 6. M is elementary if and only if there exists a ring with 
unit element, R(M) over M, such that every endomorphism of M is de-
fined by a left multiplier of R(M). 

For if M is elementary, there exists a ring R(M) such that 

R(M)^ÜM ( 0 , O; Oir) 

where ab is defined as ab, (a< >a). Let m-^dm be an endomorphism 
of M. In the above isomorphism let t< >d. Then tm = 6m, (t e R(M)). 
Conversely, if R(M) is of this type, 

R(M)^TCÜM ( 0 , 0 ; T ) , 

and if one assumes 6 t 12M, there exists a / e R(M) such that ta = 6a, 
(a e M). Hence 0 e V and T = 12M; whence M is elementary. 

COROLLARY. The modules of rational numbers, and of rational in
tegers C (the infinite cyclic group) are elementary. 

For it is readily shown that the only solution of the functional 
equation <ï> = (a-\-b) = <£> (a) + <£(&) in the field of rationals and the ring 
of integers is of the type <£(a) =ra where r is a multiplier of the do
main. 

COROLLARY. The only rings R(C) over C are given by the multiplica
tion a-b, defined as any fixed positive integral multiple of the ordinary 
product ab in the ring of rational integers. 
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To define a ring R(C) we must obtain a homomorphism 

c ~ r (e ;r) 
where T is a subring of 12c, setting a-b=ab (a-*a). But 12c is the ordi
nary ring of rational integers, its only subrings being principal ideals 
{m} . Hence we must have 

C ~ {m} (0 ; {m}) 

where 1—»m, a—^ma. 

THEOREM 7. If M is elementary, the units of OM are i?z the centrum 
of OM.* 

For the endomorphism <T~1QMO' of the additive group of Q,M (a a 
unit) must be defined by a ring multiplier p: (T~112MÖ" = P12M. Then in 
particular o-~lea = pe and p = e. 

COROLLARY. 4̂ vector space V of order greater than or equal to 2 is 
not elementary. 

For there always exist nonsingular matrices not commutative with 
the total matrix algebra, and hence not in the centrum of Oy. 

THEOREM 8. A finite module M is elementary if and only if it is cyclic. 

For a cyclic M, &M is represented by the nXn matrices (S^ay), a3-
(mod pfj). Hence under 

V) aj 
M is elementary. If there are repeated primes in the type of M, then 
the order of S2M is greater than that of M and M is not elementary 
(see §4). 

Thus the rings R(M) over elementary finite M are completely 
known, (on)(fit) being defined as (jiOifii), (0Syi<piai)-

UNIVERSITY OF WISCONSIN 

* A stronger theorem holds: If M is elementary, its endomorphism ring is commuta
tive. 


