
ON WAVE MOTION IN AN INFINITE SOLID BOUNDED 
INTERNALLY BY A CYLINDER OR A SPHERE 

ARNOLD N. LOWAN 

PART I 

In two previous papers,f the author investigated the problem of 
wave motion for infinite domains of one, two, and three dimensions 
and for certain sub-infinite domains; that is, domains bounded in cer
tain directions but extending to infinity in other directions. The pres
ent paper is a sequel to the aforementioned papers and deals with the 
problem of wave motion in an infinite solid, bounded internally by a 
cylinder or a sphere. 

In the subsequent developments we shall use the following abbrevi
ations : 

a(a) = ( « V - £2)1/2, s(p, a) = a2 + (p2 - k2)/a\ 

where a: is a real variable ranging from — oo to oo and p is a complex 
variable whose real part is positive. We shall also introduce the opera
tors Vc, V«, ]Cƒƒƒ» a n d S ƒ ƒ ƒ ƒ defined as follows : 
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t 0« wcwe motion for infinite domains, Philosophical Magazine, (7), vol. 26 (1938), 
pp. 340-360; On wave motion f or sub-infinite domains, Philosophical Magazine, (7), 
vol. 27 (1939), pp. 182-194. These papers will be referred to as L-l and L-2, respec
tively. 
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where Pn is the Legendre polynomial of degree n and y is the angle 
between the vectors from the origin to the points (r, 0, </>) and 
(r',e',4>'). 

Consider first the case of an infinite solid bounded internally by a 
cylinder. In this case the displacement satisfies the system A con
sisting of equations (1), (2), (3), and (4) : 

(1) V*U(P; t) = 2b^ U(P; t) + - - | r U(P; t) + HP; t), 

(2) limU(P;t) = / ( P ) , 
t-*0 

(3) lrm^-U(P;t)=g(P), 

(4) U(P;t)=<j>(9;t), r = R. 

As in L-l and L-2, we put 

(5) U(P;t)=u(P;t) + v(P;t), 

where u{P\ t) satisfies the system B, consisting of (1), (2), (3), and 
the boundary condition 

(6) < P ; * ) = 0 , r = R, 

and where v(P; i) satisfies the system C, obtained from A, by replac
ing U(P; t) by v(P; t) and pu t t ing / (P) =g(P) = $ ( P ; 0 = 0 . We pro
ceed to the solution of the systems B and C. 

As in L-l and L-2, the method of solving the systems B and C con
sists in making the substitution 

(7) «(r, 6;t) = *-*««i(r,fl;/), 

(8) *(r,0;t) « e r ^ C M ; / ) , 

(9) v(r,0;f) = er**vi(r, 0; / ) , 

where k = ba2. 
Let Bi and Ci designate the systems obtained from the systems B 

and C, by the substitutions (7), (8), and (9) for the functions U\, vi, 
and $i. The solutions of the last two systems are obtained by operat
ing on systems B and C with the Laplace operator and obtaining the 
systems Bi* and Ci*, for the Laplace transforms u?(r, 0; p) and 
v?(fi 0; p). When the solutions of Bi* and Ci* have been obtained, 
the corresponding solutions of B and C are obtained by acting on the 
corresponding solutions with the inverse Laplace operator. The sys
tem Bi* is ultimately obtained in the following form : 
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VcU?(r, 6;p)= - - {pf(r, 6) + h(r, 0)} + *?(r, 0; p) 
a2 

(10) 
= - F(r,6;p)(sny), 

Kr,#) = g(r,e) + kf(r,6), 

(11) ut{R, 6; p) = 0, 

and the system Ci* in the form 

(12) Vcv?(r,e-,p)=0, 

(13) vnR,e;P) = <i>?{6;P). 

In order to obtain the solution of Bi*, we make use of the identityf 

(14) f(r, 6) = 1 E ƒ ƒ ƒ I/O"', *')Gn(r, r'; «)} 

where 

Hx (ar) 

# n ( « ^ ) 

for r ' O ; the corresponding expression for r' >r, is obtained by inter
changing r and r'. 

In view of (14), it can be verified that the expression 

is the solution of the system Bi*. 
Bearing in mind the significance of F(r, 6; p) from (10), (15) be

comes 

(16) i£(r, 0; p) = «?,i(r, 0; f) + «? | t(r, 0; p) + «i*,(r, 0; #) , 

where 

<19) •**• '"> - - s s ƒƒƒ {*«" ' " ' ^ r l • 
t See Appendix at end of this paper, §1. 
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The problem now reduces to obtaining the inverse Laplace trans
forms of (17), (18), and (19). Making use of the identities 

P C " ^ r P r 
I er** cos \t dt = y I e~pt sin X/ dt = 

Jo P2 + X2 J o 
p2 + X2 J o P2 + X2 

and of Borel's theorem, we finally get 

(20) ui^r, 6; t) = — £ ƒ ƒ ƒ {ƒ(/, ö')G„(r, / ; a) cos <r(a)t\, 

(21) « M ( r , 0; t) = 1 E ƒ ƒ ƒ {h(r', 6')Gn{r, r'; a) ^ ^ } , 

«i,s(f, Ö; 0 

(22) a2 /* ' /* f C ( s i n <K«)i") 

In the case where the solutions/, g, <j>, and <E> do not depend on 0, 
it is clear that the final solution is also independent of 0. In this case, 
it can be shown (see Appendix, §2) that the identity (14) must be 
replaced by 

(140 fir) =-j~ f r'dr> f af(r')Go(r,r';a)da, 

where the expression for G0 is obtained from that for Gnj by replacing 
the index n by zero. 

In view of this result, the solutions for #1,1, ^1,2, and 2/1,3, when these 
solutions do not depend on 0, may be obtained at once from (20), 
(21), and (22), by dropping the summation sign and the factor 
cos n(Q — d') and replacing the subscript n by zero. 

We proceed to the solution of the system Ci*. The expression 

(23) v?(r, 0; p) = — È f \ * ( 0 ' ; p) cos n{6 - 6')w*(r; p)dd', 

where 

(24) w*(r; p) = — - — - (say), 
//n1 (aK) 

is a solution of (12), satisfying the boundary conditions (13), provided 

(25) s(p, a) = 0. 

If the function wn{r, t) is defined by 
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ƒ• °° H1 (ar) 

e-*>'wn(r; t)dt = \ = w*(r; p) (say), 
0 Un \OùK) 

then by Borel's theorem, the inverse Laplace transform of (23) is 

(27) vi(r, 0; /) = ~ X I I 4>i(fi'; t - r)wn(r, r) cos n(fi - d')dd'dr. 
7T _oo J o J o 

Our problem thus reduces to solving the integral equation (26), 
where a is defined in (25). Since Hr}(z)-*0 in the upper half of the 
s-plane and since its zeros are known to lie in the lower half of the 
plane, it can be easily shown with the aid of the Cauchy integral 
theorem that 

. Hi(ra) I f " x Hi{rx) 
Wn(r; p) = = — I dx 

Hi(Ra) TtiJ^ x2 - a2 Hi(Rx) 
a2 f °° x Hi(rx) 
TiJ^ p2 + [<r(x)]2 Hi(Rx) 

The inversion of (26) leads at once to 

x sin a(x)t Hn
l (rx) a2 r 

(29) wn(r; t) = -
TTl J - o , <r(x) Hi (Rx) 

dx. 

In (27) and (29), we have the complete solution of the system Bi. 
I t should be remarked that the expression wn(r; t) given by (29) 

is real. Indeed, if in the contribution to the integral in (29) for the 
range from — <*> to 0 we make the substitution x — — £, replace once 
more the variable of integration £ by x, and furthermore, make use of 
the well known relation 

(30) Hi(- z) = ( - l)»[Hi(*) - 2Jn(z)], 

(29) becomes 

a2 Cm x sin a{x)t { Hi (rx) 
Wn(r; t) = — I < 

TiJo <r(x) \Hi(Rx) 
Hi(rx)-2Jn(rx) \ 

Hi (Rx) - 2Jn(Rx) ) 

Since H}(z) = Jn(z)+iYn(z)y the above equation ultimately becomes 

2a2 r °° x sin a(x)t Jn(Rx)Yn(rx) - Jn(rx)Yn(Rx) 
(32) wn(r; t) = — — — dx. 

7T J o a(x) (MRx))2 + (Yn(Rx))2 

If the function <f> is independent of 0, it is clear that Vi is independ-
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ent of 6. In this case, instead of (23), we start with 

(23') v?(r;p)=<l>?(p)w?(r;p), 

where wf(r; p) may be obtained from (28) by replacing the subscript 
n by zero. The corresponding expression for w0(r, t) may therefore be 
obtained from (29) by replacing the subscript n by zero. With this 
definition of w0(r; t) we have 

»i( f 5 0 = I *i(* - r)iv0(r; T)<IT. 

PART II . CASE OF AN INFINITE SOLID BOUNDED 

INTERNALLY BY A SPHERE 

In this case, the displacement U(P;t) must satisfy a system similar 
to A, except that V2w(P; /) is now the Laplacian in spherical coordi
nates and the boundary condition (4) may assume the more general 
form 

(4') U(P;t) = 0 (0 ,0 ; / ) , r = R. 

The method of solution is entirely similar to that in Part I. The 
Laplace transforms of the functions U\{P\ t) and Vi(P; t) obtained 
from u(P; t),v(P; t) by the substitutions (7), (8), and (9), for the case 
under consideration, must now satisfy the systems D*, consisting of 
equations (33) and (34), and E*, consisting of (35) and (36): 

V.«i*(r, * , * ; # ) = - — {pf(r, 6, 0) + A(r, 0, <f>)} + *f(r , 0, d>; p) 
(33) a2 

= - F(r, 0, </>; p) ( say) , 

(34) u?{R,694>;p) = 0 , 

(35) v.*i*(r, 0, <ƒ>; £) = 0 , 

(36) vf{r,094>ip) = Q?(6,4>;P). 

We proceed to the solution of the system Di*. In this case, we make 
use of the following identi ty;! 

(37) f(r, 6, 0) = ^ Z ƒ ƒ ƒ ƒ {ƒ('', B>, 4>')Gn+vi{r, r', a)}. 

As in Part I, it can be verified that the expression 

f The derivation of this identity is discussed in the Appendix, §4. The expression 
for Gn+m(r, r', a) may be obtained from that of Gn(r, r', a) by replacing the subscript 
wby w+1/2. 



322 A. N. LOWAN [April 

is a solution of the system D*, provided that the expression for 
Gn+ii<2,(ry r'', a) in (38) is obtained from the expression Gn(r, r', a) by 
replacing the subscript n by w + 1/2. The expressions for wi,i, «1,2, and 
«1,3 may therefore be obtained at once from the corresponding ex
pressions in Part I in the forms 

(39)"" (^'*1' )-iiI ://// l / (''«'*' ) 

•GtH-i/2(r, i*\ ol) cos <r(a)t\ , 

(40) sin „(«)* 
•Gn+i/2(r,r ; « ) • 

(41) 

ff(a) •} 

sin cr(a)r) 
•Gn+i/2(r, r'; a) TT—fdT' 

a (a) ) 
We now proceed to the solution of the system Ei*. The expression 

v?(r, e,4>;p)= E f f *(2» + l)Pw(cos y) 

(42) n-°Jo J ° 

Q*(0',<l>';p) sin 6'd$'d<l>' 

is a solution of Ei*, provided 

(43) s(p, a) = 0 

(see Appendix, §3). 
If, then, the function wn+i /2(r, 0 is defined by 

(44) e-^ww+1/2(r; 0 # = -— —— = w»*4i/i(r; #) (say), 
J o H^+i/2{aR) 

then by Borel's theorem, the inversion of (42) yields 

n(r, M ; « ) = E I (2» + l)Pn(cos 7) 
(45) w=0 ^ o ^ o ^ 0 

• O i ( ^ 0 / ; * - r ) ^ w + i / 2 ( / , T)dd'd<l>'dT. 
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Our problem thus reduces to solving the integral equation (44). 
This equation is identical with (26) except that the subscript n is re

placed by w + 1/2. The method of solution of (45) is entirely similar to 
that of (26), and we finally get 

a2 f00 

(46) wn+1/2(r; t) = — 
x sin a(x)t H}+y2(rx) 

a(x) H}+1/2{Rx) 
dx, 

or (by a transformation similar to that for (29)) 

2a2 Ç °° x sin a{x)t 2d1 f" 
wn+V2(r; t) = I 

T J o 
a(x) 

(47) V J 

Jn+i/2(Rx)Yn+1/2(rx) — Jn+i/2(rx)Yn^1/2(Rx) 
. U/X 

(jn+i,2(Rx)y + (Yn+1/2(Rx)y 
The complete solution in the case of an infinite solid bounded in

ternally by a sphere is therefore given by 

(48) U(P; t) = e-ba2t(ultl + ult2 + « l f8 + v), 

where the terms in parentheses are given by (39), (40), (41), and (45). 
An important special case is that in which the functions ƒ, g, 12, <£ 

do not depend on the angles 6 and <f>. While the solution can be ob
tained from the previous solution by integrating the variables 6' and 
0 ' , it is easier to proceed as follows. We have to solve the system of 
equations 

> ; / ) , R<r< oo, 

R <r < oo, 

R <r < oo, 

(49) 

(50) 

(51) 

and 

dr2 r dr 

lim u(r; t) 

d 
lim — u(r; t) 
t->o dt 

= 2b — + 4 
dt a2 dt2 

= ƒ « , 

= *M, 

U(R;t) = 0 ( 0 . 

If we make the substitution u(r\t) = (l/r)v(r; /), it is readily seen that 
the function v(r ; t) must satisfy the system 

, x d2v dv 1 d2V 
(52) = 2£ — + + r$(r; t), 

dr2 dt a2 dt2 

(53) lim v(r;t) = rf(r), 
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d 
(54) lim — v(r; t) = rg(r), 

t->o ot 
(55) V(R;t) = R$(t). 

The system satisfied by v(ry t) is formally identical with that corre
sponding to wave motion in a semi-infinite solid extending from r = R 
to r = oo. 

The solution corresponding to a solid extending from 0 to oo is 
given in L-2. I t is clear that our present solution may be obtained by 
replacing x by r — R, in L-2. 

APPENDIX 

1. Derivation of the identity (14). Consider the problem of heat 
conduction in an infinite solid, bounded internally by a cylinder, the 
surface of which is kept at 0°. The solution of this problem may be 
obtained with the aid of the appropriate Green's function for a point 
source. The expression for the Green's function is 

1 °° r°° 
G(r, 0; t; r', 6') = — ] £ cos n(fi - 0') ae'^* 

4 T T _OO J ^oo 

H1(arf) 
• * , ' {jn(ar)H}(aR) - Jn(aR)H*(ar))da 
Hrl (aie) 

for r<r'. 
In the case r>r', the corresponding expression may be obtained by 

interchanging r and r'. With the aid of tne general formulas of Cars-
law'sf article 80, the solution of the problem of heat conduction under 
consideration is seen to be 

(II) r ( r , 6; t) = 1 Z ƒ ƒ ƒ {ƒ(/, tf')*»(cos 7) • e r * - 1 ^ , r', a) } . 

Putting / = 0, we obtain the identity (14). 

2. Derivation of identity (14'). The expression for the Green's 
function corresponding to a cylindrical source may be obtained by 
considering a continuous distribution of line sources around the 
cylinder r = r', integrating for the variable d' and dividing by 27T. 

The corresponding solution of the problem in heat conduction can 
then be obtained from (II) by dropping the summation sign and the 
factor cos n(d — d') and replacing the subscript n by zero. If in this 
final solution we make 2 = 0, we obtain the identity (14'). 

f Carslaw, Mathematical Theory of Heat Conduction. 
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3. Derivation of identity (42). Starting with the well known 
expansion 

00 n /* T /» 

*(*,*) = £ E I I 
w=0 m = - n ^ 0 «^ 0 

(56) 

27r (n — \m\)\ 

o (» + | w | ) ! 

F(0', 0')PrT(cos 0)Pn
m(cos e')eim((j> - 0') sin d'dd'd^', 

where the Pn
m,s are the associated Legendre polynomials, and making 

use of the identity (see Carslaw's article 93) 

" (ft- I m l ) ! 
Pw(cos 7 ) = Pn(cos 0)Pn(cos 6') + 2 J2 TTT ^m(cos 0) 

•Pn
m(cos 0') cos w(0 - <£')> 

we find that the second member of (42) reduces to Œ*(0,0 ; />) for r = R. 

4. Derivation of identity (37). The Green's function correspond
ing to a point source in an infinite solid bounded internally by a 
sphere, the surface of which is kept at 0°, is given by 

1 
G(r, 0, 0; *; r0, 0O, <£o) = 0 , ,1 / 9 E (2» + l)Pn(cos 7 ) 

(58) C00
 t , Hn\1/2(ar0) 
ae~ka t ƒ H£+1/2(aR) 

• {jn(ar)H^1/2(aR) - An-i/i(aR)H£+if2(ar) }<fo. 

With the aid of the general formula of Carslaw's article 80, the solu
tion of the appropriate problem in heat conduction is found to be 

(59) T(r, 6, 0; t) = - L _ £ ƒ ƒ ƒ ƒ {<r»>W, 0', WH-IM', r')). 

Putting t = 0, we obtain identity (37). 
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