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1. Introduction. We shall establish the following theorem, which 
at first sight appears quite unexpected : 

THEOREM 1. Any sequence {/xw} of real numbers can be represented 
in the form 

lin = I tnda(t), 
J o 

n = 0, 1, 2, 

J o 

The problem of determining necessary and sufficient conditions for 
a sequence of numbers {ixn\ to have the form 

(1.2) nn = I tnda(f), a(t) non-decreasing, n = 0, 1, 2, • • • , 
•J o 

was set and solved by T. J. Stieltjes. It would be natural to at tempt 
to generalize the problem by requiring merely that a(t) should be a 
function of bounded variation on (0, °o ) ; but the generalized prob
lem has, as Theorem 1 shows, a trivial solution. 

To establish Theorem 1, we shall exhibit an arbitrary real se
quence {fxn} as the difference of two sequences {Xw} and {vn}, each 
of the form (1.2).f The construction will also lead to the result that 
any sequence {jutw} of positive numbers of sufficiently rapid growth 
has the form (1.2); it is sufficient, for example, that 

( 1 . 3 ) MO à 1 , Mn è (^Mn-l)W , » M . 

A specimen sequence satisfying (1.3) is /*o = 1 ,Mn = ^nn, (w = 1,2, • • • ). 
As an application J of Theorem 1, it will be shown that 

* National Research Fellow. 
f Added in proof: Other proofs of Theorem 1 have been given by G. Pólya {Sur 

r indétermination d'un problème voisin du problème des moments, Comptes Rendus de 
l'Académie des Sciences, Paris, vol. 207 (1938), pp. 708-711). Pólya points out that 
a theorem of which Theorem 1 is an immediate consequence was proved by Ê. Borel 
in 1894. 

% For another application of Theorem 1, see J. Shohat, Sur les polynômes orthogo
naux généralisés, Comptes Rendus de TAcadémie des Sciences, Paris, vol. 207 (1938), 
pp 556-558. 
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with 

f(x) = I x(t)da(t), 
J o 

I tn | da(f) | < oo , 
J o 

n = 1, 2, 

is not the general linear functional on any very interesting space of 
functions x = x(t), containing an infinite number of the functions tn, 
(n = l, 2, • • • ) (see §4 for a precise statement). Other negative re
sults of this character have been obtained by J. W. Tukey and the 
author;* the reader is referred to their paper for a discussion of the 
significance of such results. 

2. Proof of Theorem 1. We use the notation 

M0M2 * * * M2; In J 

MO Ml * * ' Mn 

Ml M2 * * • Mn+1 

Mw 

0, 1, 2, 

Mn+1 * * * M2n 

Then a necessary and sufficient condition for {/j,n} to have the form 
1.2 isf 

(2.1) [jUoM2 * * * M2n] è 0, [M1M3 ' ' * M2n+l] ^ 0 , fl = 0, 1, 2, • • • . 

We choose positive numbers Xo, Xi, vo, vi, so that X0 — *>o=Mo, 
Ai —PI=/XI. We now proceed to define the sequences {An}, \vn} by 
induction. Suppose that 

(2.2) 

for k=0, 1, 2, 

(2.3) 

X& — *>& = M& 

• , 2^ — 1, and that the determinants 

[X0X2 • • • X 2 & ] , [v0V2 • • • V2k], 

[X1X3 • • • X2&+1J, ^ 1 ^ 3 * * * J^fc+lJ , 

- , n — 1. We have (with undeter-are positive for & = 0, 1, 2, • • • , n-
mined X2n) 

[X0X2 • • * X2nJ = X2nLXoX2 

where P is a polynomial in Xo, Ai, • • 

* A2n-2j + P, 

A2n-iî and there is a corre-

* R. P. Boas, Jr., and J. W. Tukey, A note on linear Junctionals, this Bulletin, vol. 
44 (1938), pp. 523-528. 

f See, for example, O. Perron, Die Lehre von den Ketteribriichen, 1929, p. 410; cf. 
also M. Riesz, Sur le problème des moments, troisième note, Arkiv för Matematik, 
Astronomi och Fysik, vol. 17 (1922-1923), no. 16. 
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sponding rela t ion for [VQV2 • • • ^2n]. Since [X0X2 • • • X2 n -2]>0, and 
[v0V2 • • • ^ - 2 ] > 0 , we can choose X2n and v2n so t h a t X2 

and so large t h a t [X0X2 • • • X2 n ]>0 , [v0V2 • • • *>2n]>0. Similarly 
we can then choose X2n+i and j^n+i so t h a t X2n+i — *,

2n+i = M2n+i, 
[X1X3 • • • X 2 n +i ]>0 , [v\Vz • • • ^2n+i]>0. Th i s completes t he induc
t ion : we can find sequences {Xn}, {vn\ such t h a t for k = 0y 1, 2, • • • , 
(2.2) is satisfied, and all the determinants (2.3) are positive. Then 
{Xn} and {vn} satisfy (2.1), and consequently have the form (1.2), 
so that {iJLn} has the form (1.1). 

3. Rapidly increasing sequences. We now prove the following 
theorem : 

THEOREM 2. If 

(3.1) Mo è 1, Mn ̂  (wMn-i)w, n = 1, 2, • • • , 

then {fJLn} has the form (1.2). 

For the proof, we modify the construction of the sequence {Xn} of 
§2. We have, for w = l, 2, • • • , 

2n-l 

( 3 . 2 ) [/X0M2 * * * M2n] = M2n[M0M2 ' * * M2n-2] + z J ± M*#*> 

where t he Dk a re w-rowed minors of [MOM2 • * * M2n] and do no t in
volve M2n. Similar ly, for n = l, 2, • • • , 

2n 

(3.3) [jUiM3 * ' • M2n+l] = M2n+lUlM3 * ' * M2n-l] + Z l ± M*Afc , 

where t he Dk' are w-rowed minors of [MIM3 • * * M2n+i], no t involving 

M2n+1-

Suppose that for k^n — 1, (w=l , 2, • • • ), 

(3.4) [/J0M2 ' ' • M2Ar] à 1, [jWlM3 ' ' * M2fc+l] = 1-

Assuming (3.1), we shall show that (3.4) is satisfied also for k = n. 
Clearly, Mm^l for m = l, 2, • • • . Hence we have 

* W \ m ^ 1 / / o s (^+4)/4 (m+2)/2 

Mm ̂  (mjjLm-i) > 2{m/2) Mm-i , w — 2, 3, 

Therefore 

,~ e N . , . (n+2)/2 n+1 (n+2)/2 n+1 
{O.b) M2n > 1 + n M2n-1, M2n+1 > 1 + W M2n • 

Now, (3.1) implies in particular that Mm+i = Mm> ( w ^ l ) ; hence the 
elements of the determinants Dk do not exceed M2n-i, and the ele-
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ments of the Dk' do not exceed /x2n. Then by Hadamard's theorem,* 

| Dk | ^ \Hn-\n , k = n, n + 1, • • • , In — 1, 

| D{ | S vinn , k = n + 1, w + 2, • • • , 2^. 

Therefore, using (3.2), (3.3), (3.4), (3.5), we obtain 

r i ^ i+«/2 n+i 
LM0M2 * * • M2nJ è M2n — ^ M2n-1 > 1 , 

r 1 ^ 1 + W / 2 n + 1 ^ 1 
lMlM3 ' ' * M2/J+1J ^ M2n+1 — n M2n > 1 . 

Thus (3.4) holds for k = w if it holds for & <w; but it holds for k = 0 
by assumption, and consequently holds for all k; therefore {/xn} has 
the form (1.2). 

The moment problem (1.2) is said to be determined or undeter
mined according as the function a(t) is or is not unique (after being 
normalized by the conditions a ( 0 ) = 0 , a(t) = [a(t+)+a(t — )]/2 for 
/ > 0 ) . A consequence of Theorem 2 is that the moment problem (1.2) 
is not only solvable for any sequence {jun} of sufficiently rapid 
growth, but is even undetermined. In fact, if {juw} satisfies (3.1) 
and if in addition /x2^ ( 2 M I + 2 ) 2 , we define a sequence {*>n} by setting 
v\ = JJLI + 1 , vn = jjLn f or n 9e 1. Then {vn} satisfies (3.1); consequently for 
» = 0, 1,2, • • • , 

V2n = I t2ndfi(t) = I undp(u^2) = I undy(u), 
J o J 0 •* 0 

say ; while 

V2n = M2n = I /2wd«(0 = I Undb(u) , 
•Jo J o 

where 7(w) and S(w) are normalized and non-decreasing. But y(u) 
and ô(w) are distinct, since 

ƒ
, 00 ~ 00 

ul'2dy(u) = 1 + 1 ul**dô(u) = 1 + ML 
o «Jo 

Hence the moment problem for the sequence {//2n} is undetermined. 
4. Linear functionals. We use the terminology of S. Banach's 

book, f Let R be a topological vector space of elements x, let P be a 

* G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities, 1934, p. 34. 
f Theorie des Opérations Linéaires, 1932. 
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space of elements p, and let fP(x) be a functional with domain R, 
defined for each p in P . We say that a general linear functional in R 
is fp(x), if the following conditions are satisfied: 

(i) fp(x) is a linear functional f or every p e P. 
(ii) Every linear functional g(x) with domain R is identically equal 

to some fp(x). 

In the application to be made here, the elements of P are the 
functions p = p(f), of bounded variation on (0, <*>), such that 

ƒ
> 00 

H^(fll<°°» 
n 

» = 1 , 2, 

the elements of R are measurable functions x = x{t), defined on (0, <*> ) ; 
and 

(4.1) ƒ„(*) = f x(t)dp(t), 
J o 

where the integral is a Lebesgue-Stieltjes integral. We have the 
following result: 

THEOREM 3. Let R be a topological vector space with the following 
property* 

(Q) • If x t R and an—>0, then anx—>©.f 
Then if R contains an infinite number of functions tn, (w = 0, 1, 

2, • • • ), there is some p t P for which (4.1) is not a linear functional 
on R. 

In particular, we see that, under the hypotheses of Theorem 3, 
(4.1) is not a general linear functional on R. 

Suppose that (4.1) is, for every p e P , a linear functional on a space 
R with the specified properties. Let 5 be the subspace composed of 
all finite linear combinations of the elements tn which are in R (with 
the topology of R). If ƒ is an arbitrary distributive (that is, additive 
and homogeneous) functional with domain 5, we define a sequence 
{Mn} by setting fxn=f(tn) when tn z R, and Mn = 0 otherwise. By 
Theorem 1, there is a p t P such that 

»n= f tndp(t), n = 0, 1, 2, • • • . 
J o 

Since ƒ is distributive, we then have 

* In particular, a space of type F has this property. 
f © denotes the zero element of R. 
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(4.2) f(x) = I x(t)dp(t), xzS. 
J o 

Now (4.1) is a linear functional on R, and consequently a linear 
functional on S. Hence (4.2) states that every distributive functional 
on S is linear; but this is impossible unless 5 is finite-dimensional,* 
which it is not. This contradiction establishes the theorem. 

NORTON, MASSACHUSETTS 

ON FUNDAMENTAL SYSTEMS OF SYMMETRIC 
FUNCTIONS! 

H. T. ENGSTROM 

A set S of n polynomials over a field K, symmetric in n variables, 
said to form a fundamental system if any rational 

function over K, symmetric in these variables, can be expressed ra
tionally in terms of the polynomials of S. In this paper we show that 
any n algebraically independent symmetric polynomials over a field 
K of characteristic zero form a fundamental system if the product of 
their degrees is less than 2n\. 

The result follows from a theorem due to Perron :J 

THEOREM 1. Between n+1 polynomials (not constant), j \ , j2, • • •, fn+u 
in n variables, of degrees m\, ra2, • • • , mn+i, respectively, there is always 
an identity of the form 

Z-jCnV2...Vn+1fif2 • • • fn+1 = 0, 

where in each term, 
n + l n+1 

X) miVi = I I mi-

* Let every distributive functional on S be linear, where 5 is a topological vector 
space with the property (Q). If S is infinite dimensional, let {xn}, (n = l, 2, • • • ), be 
an infinite set of linearly independent elements. Since \imk+Mk~lxn = O, we can choose 
yn e S, (» = 1, 2, • • • ), linearly independent, with :yn—>0. We set ƒ 6 0 = 1, f(oc)=0 
when x is not a finite linear combination of the yny f(ax-\-by) = af(x) -\-bf(y) for any 
x e S, y e S; then ƒ is a distributive functional on S, and hence is linear on S. Since 
yn—>©, f(yn)—>0 as w—><*>; but this contradicts f(yn) = 1. Consequently S is finite 
dimensional. 

t Presented to the Society, February 25, 1939, under the title A note on funda
mental systems of symmetric functions. 

% O. Perron, Bemerkung zur Algebra, Sitzungsberichte der Bayerischen Akademie, 
mathematisch-naturwissenschaftliche Abteilung, 1924, pp. 87-101. 


