$$
\begin{equation*}
f(x)=\int_{0}^{\infty} x(t) d p(t), \quad x \varepsilon S \tag{4.2}
\end{equation*}
$$

Now (4.1) is a linear functional on R, and consequently a linear functional on S. Hence (4.2) states that every distributive functional on S is linear; but this is impossible unless S is finite-dimensional,* which it is not. This contradiction establishes the theorem.

Norton, Massachusetts

ON FUNDAMENTAL SYSTEMS OF SYMMETRIC FUNCTIONS \dagger

H. T. ENGSTROM

A set S of n polynomials over a field K, symmetric in n variables, $x_{1}, x_{2}, \cdots, x_{n}$, is said to form a fundamental system if any rational function over K, symmetric in these variables, can be expressed rationally in terms of the polynomials of S. In this paper we show that any n algebraically independent symmetric polynomials over a field K of characteristic zero form a fundamental system if the product of their degrees is less than $2 n$!.

The result follows from a theorem due to Perron: \ddagger
Theorem 1. Between $n+1$ polynomials (not constant), $f_{1}, f_{2}, \cdots, f_{n+1}$, in n variables, of degrees $m_{1}, m_{2}, \cdots, m_{n+1}$, respectively, there is always an identity of the form

$$
\sum C_{\nu_{1} \nu_{2}} \cdots \nu_{n+1} f_{1}^{\nu_{1}} f_{2}^{\nu_{2}} \cdots f_{n+1}^{\nu_{n+1}} \equiv 0
$$

where in each term,

$$
\sum_{i=1}^{n+1} m_{i} \nu_{i} \leqq \prod_{i=1}^{n+1} m_{i}
$$

[^0]The coefficients $C_{\nu_{1} \nu_{2}} \cdots \nu_{n+1}$ belong to the coefficient field of $f_{1}, f_{2}, \cdots, f_{n+1}$.
Consider any n algebraically independent polynomials $\phi_{1}, \phi_{2}, \cdots, \phi_{n}$, of degrees $m_{1}, m_{2}, \cdots, m_{n}$, with coefficients in a field K of characteristic zero. By Theorem 1 there exist relations

$$
\begin{equation*}
\Phi_{i}\left(x_{i}, \phi_{1}, \phi_{2}, \cdots, \phi_{n}\right) \equiv 0, \quad i=1,2, \cdots, n \tag{1}
\end{equation*}
$$

each of degree less than or equal to $\prod_{i=1}^{n} m_{i}$ in x_{i}. The algebraic independence assures the actual presence of x_{i} in (1). It follows from (1) that the field $K\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ of all rational functions of the $x_{1}, x_{2}, \cdots, x_{n}$ is a finite algebraic extension of the field $K\left(\phi_{1}, \phi_{2}, \cdots, \phi_{n}\right)$ generated by $\phi_{1}, \phi_{2}, \cdots, \phi_{n}$. Since K is of characteristic zero, this extension contains a primitive element ξ, which, by Theorem 1, satisfies a relation of the type (1) of degree less than or equal to $\prod_{i=1}^{n} m_{i}$ in ξ. Hence we have the following lemma:

Lemma 1. If $\phi_{1}, \phi_{2}, \cdots, \phi_{n}$ are n algebraically independent polynomials of degrees $m_{1}, m_{2}, \cdots, m_{n}$, then the field $K\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ is a finite algebraic extension of $K\left(\phi_{1}, \phi_{2}, \cdots, \phi_{n}\right)$ of degree less than or equal to $\prod_{i=1}^{n} m_{i}$.

The following result, which we state as a lemma, is well known:*
Lemma 2. If $a_{1}, a_{2}, \cdots, a_{n}$ are the elementary symmetric functions of $x_{1}, x_{2}, \cdots, x_{n}$, then $K\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ is a Galois extension of $K\left(a_{1}, a_{2}, \cdots, a_{n}\right)$ of degree $n!$.

Suppose now that $\phi_{1}, \phi_{2}, \cdots, \phi_{n}$ are algebraically independent and symmetric. Since $a_{1}, a_{2}, \cdots, a_{n}$ form a fundamental system of symmetric functions, it is clear that $K\left(a_{1}, a_{2}, \cdots, a_{n}\right)$ contains $K\left(\phi_{1}, \phi_{2}, \cdots, \phi_{n}\right)$. Hence the degree of $K\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ over $K\left(\phi_{1}, \phi_{2}, \cdots, \phi_{n}\right)$ must be a multiple of the degree of $K\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ over $K\left(a_{1}, a_{2}, \cdots, a_{n}\right)$. If $\prod_{i=1}^{n} m_{i}<2 n!$, it follows from Lemma 1 that the degree of $K\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ over $K\left(\phi_{1}, \phi_{2}, \cdots, \phi_{n}\right)$ must be $n!$. Hence

$$
K\left(\phi_{1}, \phi_{2}, \cdots, \phi_{n}\right)=K\left(a_{1}, a_{2}, \cdots, a_{n}\right),
$$

and we have the theorem:
Theorem 2. Any set of n algebraically independent polynomials $\phi_{1}, \phi_{2}, \cdots, \phi_{n}$, symmetric in $x_{1}, x_{2}, \cdots, x_{n}$, over a field of characteristic zero forms a fundamental system if the product of their degrees is less than $2 n$!.

[^1]Theorem 2 is the best possible theorem of its kind; that is, the best general sufficiency condition for a fundamental system in terms of an upper bound for the product of the degrees without reference to the form of the polynomials $\phi_{1}, \phi_{2}, \cdots, \phi_{n}$. This may be verified by the example $\phi_{1}=a_{2}, \phi_{i}=S_{i},(i \geqq 2)$, where a_{2} is the elementary symmetric function of degree 2 , and S_{i} is the sum of the i th powers of the variables. In this case, the product of the degrees is $2 n!$. The independence of $\phi_{1}, \phi_{2}, \cdots, \phi_{n}$ is established by showing the nonvanishing of the functional determinant D. The expression for D is

$$
D=n!\cdot\left|\begin{array}{cccc}
a_{1}-x_{1} & a_{1}-x_{2} & \cdots & a_{1}-x_{n} \\
x_{1} & x_{2} & \cdots & x_{n} \\
x_{1} & x_{2}^{2} & \cdots & x_{n} \\
\cdot & \cdot & \cdots & \cdot \\
x_{1}^{n-1} & x_{2}^{n-1} & \cdots & x_{n}^{n-1}
\end{array}\right|
$$

where $a_{1}=x_{1}+x_{2}+\cdots+x_{n}$. After adding the second row to the first, and factoring a_{1} from the first row, we have the Vandermonde determinant. Hence D does not vanish identically. On the other hand, $a_{1}=\left(\phi_{2}+2 \phi_{1}\right)^{1 / 2}$ is an irrational expression for a_{1} whose uniqueness is guaranteed by the independence. In other words, a_{1} cannot be expressed rationally in terms of the set $\phi_{1}, \phi_{2}, \cdots, \phi_{n}$, and the latter set does not form a fundamental system.

[^2]
[^0]: * Let every distributive functional on S be linear, where S is a topological vector space with the property (Q). If S is infinite dimensional, let $\left\{x_{n}\right\},(n=1,2, \cdots)$, be an infinite set of linearly independent elements. Since $\lim _{k \rightarrow \infty} k^{-1} x_{n}=\Theta$, we can choose $y_{n} \varepsilon S,(n=1,2, \cdots)$, linearly independent, with $y_{n} \rightarrow \Theta$. We set $f\left(y_{n}\right)=1, f(x)=0$ when x is not a finite linear combination of the $y_{n}, f(a x+b y)=a f(x)+b f(y)$ for any $x \varepsilon S, y \varepsilon S$; then f is a distributive functional on S, and hence is linear on S. Since $y_{n} \rightarrow \Theta, f\left(y_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$; but this contradicts $f\left(y_{n}\right)=1$. Consequently S is finite dimensional.
 \dagger Presented to the Society, February 25, 1939, under the title A note on fundamental systems of symmetric functions.
 \ddagger O. Perron, Bemerkung zur Algebra, Sitzungsberichte der Bayerischen Akademie, mathematisch-naturwissenschaftliche Abteilung, 1924, pp. 87-101.

[^1]: * Cf. van der Waerden, Moderne Algebra, vol. 1, p. 173.

[^2]: Yale University

