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(4.2) f(x) = I x(t)dp(t), xzS. 
J o 

Now (4.1) is a linear functional on R, and consequently a linear 
functional on S. Hence (4.2) states that every distributive functional 
on S is linear; but this is impossible unless 5 is finite-dimensional,* 
which it is not. This contradiction establishes the theorem. 

NORTON, MASSACHUSETTS 

ON FUNDAMENTAL SYSTEMS OF SYMMETRIC 
FUNCTIONS! 

H. T. ENGSTROM 

A set S of n polynomials over a field K, symmetric in n variables, 
said to form a fundamental system if any rational 

function over K, symmetric in these variables, can be expressed ra
tionally in terms of the polynomials of S. In this paper we show that 
any n algebraically independent symmetric polynomials over a field 
K of characteristic zero form a fundamental system if the product of 
their degrees is less than 2n\. 

The result follows from a theorem due to Perron :J 

THEOREM 1. Between n+1 polynomials (not constant), j \ , j2, • • •, fn+u 
in n variables, of degrees m\, ra2, • • • , mn+i, respectively, there is always 
an identity of the form 

Z-jCnV2...Vn+1fif2 • • • fn+1 = 0, 

where in each term, 
n + l n+1 

X) miVi = I I mi-

* Let every distributive functional on S be linear, where 5 is a topological vector 
space with the property (Q). If S is infinite dimensional, let {xn}, (n = l, 2, • • • ), be 
an infinite set of linearly independent elements. Since \imk+Mk~lxn = O, we can choose 
yn e S, (» = 1, 2, • • • ), linearly independent, with :yn—>0. We set ƒ 6 0 = 1, f(oc)=0 
when x is not a finite linear combination of the yny f(ax-\-by) = af(x) -\-bf(y) for any 
x e S, y e S; then ƒ is a distributive functional on S, and hence is linear on S. Since 
yn—>©, f(yn)—>0 as w—><*>; but this contradicts f(yn) = 1. Consequently S is finite 
dimensional. 

t Presented to the Society, February 25, 1939, under the title A note on funda
mental systems of symmetric functions. 

% O. Perron, Bemerkung zur Algebra, Sitzungsberichte der Bayerischen Akademie, 
mathematisch-naturwissenschaftliche Abteilung, 1924, pp. 87-101. 
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The coefficients CVlV2...Vn+1 belong to the coefficient field offu ƒ2, • • • ,/n+i. 

Consider any ^algebraically independent polynomials^!, 02, • • *,0n, 
of degrees mly m2, • • • , mn, with coefficients in a field K of character
istic zero. By Theorem 1 there exist relations 

(1) &%(%%, 01 , 02, ' • • , 0n) S3 0 , f = 1, 2, • • • , tl, 

each of degree less than or equal to H^.1 m< in #,-. The algebraic inde
pendence assures the actual presence of Xi in (1). It follows from 
(1) that the field if(xi, x2, • • • , xn) of all rational functions of 
the xi, X2, - - • , xn is a finite algebraic extension of the field 
if (0i, 02, • • • , 0W) generated by 0i, 02, • • • , 0«. Since if is of char
acteristic zero, this extension contains a primitive element £, which, 
by Theorem 1, satisfies a relation of the type (1) of degree less than 
or equal to HJ=1 m* in £. Hence we have the following lemma : 

LEMMA 1. If 0i, 02, • • • , 4>n are n algebraically independent polyno
mials of degrees m\, m2, • • • , tnn, then the field K(xi, x2, • • • , xn) is 
a finite algebraic extension of K(0i, 02, • • • , 0») of degree less than or 
equal to Ü I L Mi' 

The following result, which we state as a lemma, is well known:* 

LEMMA 2. If ai, a2y • • • , an are the elementary symmetric f unctions 
of xi, x2, • • • , xn, then if (xi, x2> • • • , xn) is a Galois extension of 
K(ai, a2, - - - , an) of degree n\. 

Suppose now that 0i, 02, • • • , 0 n are algebraically independent 
and symmetric. Since #i, a2, • • • , an form a fundamental system of 
symmetric functions, it is clear that K(a\, a2, • • • , an) contains 
if (0i, 02, • • • , 0n). Hence the degree of K(xi, x2, • • • , xn) over 
if (0i, 02, • • • ,0n) must be a multiple of the degree of if (#1, x2, • • - ,xn) 
over if (ai, a2, • • • , an) . IflXLi w *<2#! , it follows from Lemma 1 that 
the degree of if (xi, x2l • • • , #n) over if (0i, 02, • • • , 0») must be w!. 
Hence 

i f (01 , 02, * ' * , 0n) == i f (#1, #2, * * * , #n), 

and we have the theorem : 

THEOREM 2. Any set of n algebraically independent polynomials 
0i, 02, * • • , 0n, symmetric in x1} x2, • • • , xn, fl^er afield of characteristic 
zero forms a fundamental system if the product of their degrees is less 
than 2n\. 

* Cf. van der Waerden, Moderne Algebra, vol. 1, p. 173. 
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Theorem 2 is the best possible theorem of its kind; that is, the best 
general sufficiency condition for a fundamental system in terms of 
an upper bound for the product of the degrees without reference to 
the form of the polynomials 0i, 02, • • • , <t>n> This may be verified by 
the example (/>i = a2, 0; = S;, ( i ^ 2 ) , where a2 is the elementary sym
metric function of degree 2, and Si is the sum of the ith powers of 
the variables. In this case, the product of the degrees is 2n\. The in
dependence of 0i, 02, * • • , <i>n is established by showing the nonvan-
ishing of the functional determinant D. The expression for D is 

01 — Xn I 

2 
Xn 

n - 1 
Xn I 

where ai = Xi+x2+ • • • +xn. After adding the second row to the first, 
and factoring a,\ from the first row, we have the Vandermonde de
terminant. Hence D does not vanish identically. On the other hand, 
a>i = (02 + 20i)1/2 is an irrational expression for ax whose uniqueness is 
guaranteed by the independence. In other words, a\ cannot be ex
pressed rationally in terms of the set 0i, 02, • • • , 0n, and the latter 
set does not form a fundamental system. 
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