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The purpose of this note is to show that in the evaluation of a 
Lebesgue integral a sort of random sampling scheme is permissible. 
I t is possible, therefore, that the results may have application to 
questions of probability or statistics. 

The chief positive result established here is embodied in Theorem 4. 
With the object of indicating clearly the question at issue, however, 
we formulate two particular cases in the preliminary Theorems 1 
and 2. In connection with the first of these particular cases a nega
tive result, exhibiting the need for a limitation which is placed upon 
the sampling process, will be shown. Theorem 3, a third particular 
case of Theorem 4, will be established as an aid to the proof of Theo
rem 4. 

Let x(t) be summable on the interval 0 ^ t^ 1, that is, x e L ( [0, 1 ]) ; 
let k be a fixed integer greater than or equal to 1 ; let [0, 1 ] be divided 
into n equal parts (w = l, 2, 3, • • • ) each of length l/n\ and let the 
ith one (i = 1, 2, • • • , n) of these parts in turn be divided into k equal 
parts; let wn,,-,,•„ (i = l, 2, • • • , n;ji= 1, 2, • • • , k for each i), desig
nate the L-integral mean of x(t) on the j i th of the k equal parts into 
which the ith subinterval of [0, l ] has been divided; and form the 
"Riemann-Lebesgue" sum 

n 

Clearly this sum is multiple-valued, of multiplicity kn. 

THEOREM 1. Under the conditions stated, we have 

lim kSn = I x(t)dt. 
n—*<» J o 

This can be proved by showing that if Sn and S" denote arbitrary 
values of Sn obtainable by some choices of the ji, we have 

ƒ» 1 - 1 / (kn) 

\x(t+ l/(fen)) - x(t)\dt, 
0 

which tends to zero with 1/n. The limit of kSn may then easily be 
identified with fox(t)dt. 

442 
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Before proceeding to the second preliminary theorem we show that, 
if k is allowed to be a function of n, k(n), with 

lim sup k(n) = oo y 
n—• <» 

there always exists an x t L( [O, 1 ]) (in fact, a bounded summable func
tion) for which Theorem 1 does not hold. Indeed, under this condition 
on k(n), there exists a non-decreasing sequence {Nn} such that k(Nn) 
is greater than or equal to 2W+1 for every n. Let An be the subset of 
[0,1] denned by* 

i V n - l 

Clearly ^4n has measure less than or equal to 1/2n+1 for each n> and 
A =X^Li^4n has measure less than or equal to 1/2. Let x(t) be the 
characteristic function of the set A. Then if we take ji always as 1, 
it is clear that 

Nn 

k(Nn)SNn = £ mNn,i,i/Nn = 1 for every w, 

whence, as w—><*>, 

n)SNn-*l > 1/2 ^ f * ( 0 # . 
•J 0 

Incidentally, it may be noted that there exist other selections of n 
and the j» under which k{n)Sn tends to a limit less than or equal to 

p ox(t)dt. 

On the other hand, we observe that for each fixed x t L([0, l ] ) , 
there exists a function k(n) with \imn^(X)k{n) = oo for which we do have 

)Sn= jjx(t)dt. limw^oofe(^ 

For, by Theorem 1, to each integer m>0 corresponds an integer 
Nm>0 such that 

)n I 0 % mSn— \0x(t)dt <\/m 

* The symbol [a, b] stands for the closed interval a^t^b. 
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for all n>Nm. If, in addition, the Nm are chosen to satisfy the condi
tion Nm < Nm+i for every m, we may define k(n)=n for Nn<n^ Nn+i, 
(» = 1 ,2 ,3 , • • • )> and obtain the property asserted. 

A complete extension of Theorem 1 to what is usually thought of 
as a Riemann integral set-up is provided by the following theorem. 

THEOREM 2. Let x e £( [0 , l ] ) and k be any fixed real number greater 
than or equal to 1 ; and for 0 < 5 ^ 1 let H(b) stand for the aggregate of 
measurable subsets A of [0, 1 ] defined by the condition A e H(8) if and 
only if there exist numbers a0l aif • • • , apwithO = a0<ai< • • • <ap = l 
such that* 

| [ay_i, a;]-A | = (aj - aj-i)/k, a, - a^x < Ô, j = 1, 2, • • • , p. 

Then we have 

lim inf k I x(t)dt = I x{t)dt = lim sup k I x(t)dt. 
ô-*0 AeH(6) J A J 0 S-»0 AeH(5) J A 

Still further generalization, however, is possible. As a first step to
ward it we establish the following lemma, in which C( [0, 1 ]) stands 
for the class of functions continuous on [0, l ] . 

LEMMA. Let x e C([0, l ] ) . Corresponding to any e>0 , there exists a 
§ > 0 such that if {An} and {Bn} are sequences (finite or infinite) of 
measurable subsets of [0, 1 ] satisfying the conditions 

AncBn, 0 < | An\, diameter (2?n) < 5, n = 1, 2, 3, • • • ; 

\Bm-Bn\ = 0, m^n- £ Bn = [0, l ] , 

then we have 

f * ( / ) # - £ I i?» I * f x(t)dt/\An\ < € . 

PROOF. There exists S > 0 such that | h — h\ <b implies | x(h) — x(fe) | 
< e/2. On each set Bn of diameter less than S, the integrals f 

J x/\Bn\t I x/\An\ 

Bn J An 

both lie between the greatest lower and least upper bounds of x(t) on 

* We use \E \ to denote the measure of a measurable set E. 
t Henceforth we shall often write, for example, fB x/\Bn\ in place of 

fBn%(t)dt/\Bn |, when such abbreviation seems likely to cause no confusion. 
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the set Bni whence these integrals differ by e/2 at most. Therefore we 
infer 

ƒ 00 - X ) I Bn I ' I X/ \ A n I 
0 n J An 

E1 Bn 1 • r */15.1 - £ 1 a. 1. f */ u„ 1 
w *^J5» n J An 

^ H\Bn\]f x/\Bn\- f x/\An\ \^~J1\ Bn\ <e. 
n I v Bn J An I 2 n 

Remarks. I t is now a simple matter to extend this lemma to the 
case of x e R{ [O, 1 ]), where R represents the class of Riemann-integra-
ble functions. For an x e R can be approximated in the mean within 
e/2 by a function y t C with y{t) ^x{t) on [O, 1 ]. Then if S corresponds 
to e/2 for y in accordance with the lemma, we have 

E | £ n | ' f */\An\ 
n J An 

^ X I Bn | ' f y/ I n̂ | < f 3̂  + e/2 < f « + €. 
n J An ^ 0 ^ 0 

Similarly, by approximating x by y from below, we obtain the other 
half of the desired inequality. Clearly the lemma holds also for any 
function x which is almost everywhere equal to a function y e R{ [0,1 ]). 

Tha t the lemma cannot be extended to the case of x e L([0, l ] ) is 
evident; for whenever x is not essentially bounded, the An can be so 
chosen that the corresponding sum is arbitrarily large, and whenever 
x is essentially bounded but not almost everywhere equal to a func
tion y e R{ [0, 1 ]), the An and Bn can be so chosen that the correspond
ing sum approximates either the essential upper or the essential lower 
Darboux integral of x. 

T h e following theorem extends Theorem 2 in three distinct direc
tions. 

THEOREM 3. Let x t L{ [0, 1 ]) and k be any fixed real number greater 
than or equal to 1. Corresponding to any e>0 , there exists a S>0 such 
that if {An} and {Bn} are sequences {finite or infinite) of measurable 
subsets of [0, l ] satisfying the conditions 

An cBn, 0 < | Bn | S k | An | , diameter {Bn) < 5, n = 1, 2, 3, • • • ; 

\Bm-Bn\ = 0, m^n; ^2 Bn = [0, l ] , 
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' An 

Ar 

then we have 

f x{t)dt - E I -B» I " f x(t)dt/ \An\\<e. 
\ J 0 n J An 

PROOF. Let y e C([0, l ] ) be such that fo\x-y\ <e/(2fc + 2), and let 
ô correspond to e/2 for y in accordance with the lemma. Then we have 

0 n JAn I 

= 1 f'*- f\+ fly-Z\Bn\- f y/U»l 
I • ' 0 ^ 0 ^ 0 n J A 

+ j:\Bn\- f (y-x)/ 

^ f ' U - y l + l f y- Z | 5 n | - f y/U» 
•̂  0 1 ^ 0 n J An 

+ T,\B»\- f | * - y | / U » l 

< e/(2k + 2) + e/2 + k f \ x - y | < e. 
J o 

Finally, we have the following theorem. 

THEOREM 4. Theorem 3 holds for x e L{E), where E is an arbitrary 
measurable set, bounded or unbounded. 

PROOF. When E is bounded, the validity of this result may be seen 
at once. For the above lemma holds if x is uniformly continuous on E. 
And if E c [a, b], x may be defined as zero on [a, b] — E, and a func
tion y e C([a, b]) approximating x in the mean within €/(2& + 2) on 
[a, b] is uniformly continuous on E and approximates x in the mean 
within e/(2fe + 2) on E ; so that the argument used above in the proof 
of Theorem 3 applies without change. Moreover, the reasoning shows 
clearly that the following statement is valid. 

(i) If 5 corresponds to x, E, k, e f or a bounded set E, and E^ is any 
measurable subset of E, the same ô corresponds to x, JEi, £, e. 

To dispose of the case of E unbounded, let H M stand for the set 
[ — M, M], M>0; and H M for the complement of H M with respect to 
the infinite interval — oo < / < + oo. First, let M be chosen so that 
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/ t f .# i i f |# (0 |^< € / (2&+2) . Secondly, in accordance with the theorem 
for a bounded set, let ô, ( ô < l ) , correspond to re, E-HM+U k> e/2. 
Thirdly, let {An} and {Bn} be any sequences satisfying the hy
potheses; and allow ^£jn to stand for a sum extended over all values 
of n for which | J3w--Hjif| > 0 , and £)„ for the rest of the sum ]T)„. 
Then we have 

J oe - 2 1 B*\' \ oc/\An\\ 
E n J An I 

J c x+ c X-Y:' \B%\. f x/\An\ 
\J^Bn J KBn n J An 

— XT'I Bn\' I x/\ A n \ \ 
n J An I 

^ f hl + | f *~ E' |5n|- f X/Un| 

+ * f |*| 

< (*+ 1) f | x\ +e/2 < e 

in consequence of the relation y]'nBn c E - HMA-I, the choice of 5, and 
the remark (i). 

Similar results obtain for a function of several variables, since the 
above proofs (employing only the uniform continuity of a function 
continuous over a closed interval and the possibility of approximat
ing in the mean a summable function by a continuous one) are essen
tially independent of dimensionality. 
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