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radius 1/n having restrictions at hv. Let F denote the family of all 
collections G(„,n). It can easily be shown that -Fis the required family. 
Axiom 2 is evidently satisfied. 

Note. If in space Ta the point P be said to be the sequential limit 
point of a type œa sequence of points [P;]ico« if and only if it is true 
that if R is a region containing P , then R contains a residue of se­
quence [i\-]***«, there then exist type œa convergent sequences of 
points. Thus we have been led by a series of apparently natural defini­
tions to the existence of uncountable convergent sequences of points 
in certain spaces of uncountably many dimensions. 
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NOTE ON THE LOCATION OF ZEROS OF THE DERIVATIVE 
OF A RATIONAL FUNCTION WHOSE ZEROS AND 

POLES ARE SYMMETRIC IN A CIRCLE* 

J. L. WALSH 

1. Introduction. The most general function which effects a 1-to-m 
conformai transformation of the interior of the unit circle | z\ — 1 onto 
itself is of the form 

(1) f ( « ) = X l I - > U | < 1 , |X | = 1; 

so the location of the zeros of the derivative r'{z) is of considerable 
interest. The zeros and poles of r(z) are symmetric in the unit circle. 
Moreover a typical transcendental function bounded in the unit circle 
is the Blaschke product (assumed convergent) 

(2) 5(*) = n - i — r 7' 
fc=l I <Xk | ÔLkZ — 1 

which is the limit for |z | < 1 of a sequence of functions each of form 
(1). I t is of some significance in studying the behavior of B(z) to 
know exactly or approximately the zeros of B'(z). The object of the 
present note is to give some fairly simple but elegant results on the 
derivatives of both r(z) and B(z). Application is made also to the 
critical points of certain harmonic functions. 

2. Derivative of a rational function. We first obtain the following 
result: 

* Presented to the Society, December 30, 1938. 
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THEOREM 1. Let a circle K lie interior to C\ \z\=l and contain in 
its interior all the points au ot2, • • • , am. Then K contains in its in­
terior precisely m — \ zeros of r'{z), where r(z) is defined by (1). The in­
verse with respect to C of the interior of K contains all the remaining finite 
zeros of r'(z). 

The zeros ak of r(z) and the poles l/ak of r(z) are mutually inverse 
in C, so the poles of r(z) lie exterior to K, and the conclusion follows 
from the results due to Bôcher and the present writer.* 

If the points aiy a*, • • • , am are given, Theorem 1 enables us, by 
the use of a number of different circles Ky to obtain a region interior 
to C containing in its interior both all the oik and all the m — 1 zeros 
of r(z) interior to C. Still another result is somewhat more specific: 

THEOREM 2. If a circular region G bounded by a circle Y orthogonal 
to C: | z\ = 1 contains in its interior no point ak, then the region G con­
tains in its interior no finite zero of r'(z), where r(z) is defined by (1). 

In Theorem 2 (and in similar situations below) such a circle as V 
may be a straight line. In proving the theorem it will be a convenience 
to have for reference the following lemma, whose proof is immediate: 

LEMMA 1. In the field of force due to n unit particles Qu Q2, • • • , Qn 

each repelling with a force equal to the inverse distance, the force at a 
point P may be found as follows. Let Qk be the inverse of the point Qk 

in the unit circle whose center is P. Let Q' be the center of gravity of the 
points Qi , Q{, • • • , Qn . Then the force at P due to the n particles Qk 

is n times the vector Q'P. 

The finite zeros of rr(z) not multiple zeros of r{z) are the positions 
of equilibrium in the field of force due to equal repelling particles each 
of mass + 1 situated at each of the points ak, and equal repelling par­
ticles each of mass —1 (that is, attracting particles of mass + 1 ) situ-

* Bôcher (Proceedings of the American Academy of Arts and Sciences, vol. 40 
(1906), pp. 469-484) proves: If two circular regions J\ and Ti have no point in common 
and contain respectively the roots of two binary forms f\ of degree p\ and f2 of degree p2, 
then T\ and Ti contain respectively pi — 1 and pi — 1 roots of the jacobian of fi and ƒ2. 
A circular region is here and below a closed region of the extended plane bounded by 
a circle or line. 

Bôcher's result was applied by Walsh (Transactions of this Society, vol. 19 (1918), 
pp. 291-298) to the study of the derivatives of a rational function: If two circular 
regions T\ and T$ have no point in common and contain respectively all the zeros and all 
the poles of a rational f unction f {z) of degree n, then all of the zeros of the derivative f \z) 
lie in T\ and Ti except that there are two additional zeros offf{z) at infinity iff(z) has no 
pole there. Except f or these two possible zeros, there are precisely n — 1 zeros of f'{z) in 
T\} and iff(z) has no multiple poles, there are precisely n — \ zeros of f'{z) in T%. 
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ated at each of the points l/cfo; the law of force is that of the inverse 
distance.* Under the hypothesis of Theorem 2, let the point P lie in 
the region G. The inverses of C and Y in the unit circle whose center 
is P are circles C and r", which are orthogonal to each other; Y' is 
necessarily a proper circle; the circle C' separates the images Ql of 
the <Xk from the images Ql' of the l/a*; the points Ql and Ql' lie 
in the image of the complement of G, namely the interior of T ' ; the 
point P may or may not lie interior to Y'. For convenience in exposi­
tion, let us orient the plane so that both C' and Y' are symmetric in 
a vertical line (that is to say, so that the two points of intersection 
of Cf and Yf lie on a horizontal line), with each point Ql above the 
corresponding point Ql '; of course Ql and Ql ' are mutually inverse 
in C". Then the center of gravity Q' of the points Ql lies above the 
center of gravity of the points Ql '. Consequently, (Lemma 1) the 
resultant of the attractive forces is not equal and opposite to the 
resultant of the repelling forces; the point P cannot be a position 
of equilibrium in the field of force; the point P cannot be a multiple 
zero of r(z), hence cannot be a zero of rf(z)\ so Theorem 2 is estab­
lished. 

An immediate consequence of Theorem 2 is the following corollary : 

COROLLARY. Under the hypothesis of Theorem 2, if all the points ak 

lie on T, then all the finite roots of r'{z) also lie on Y. 

In any given situation, there are a number of circles Y of the kind 
required in Theorem 2 that can be drawn to delimit a region in which 
the zeros of r\z) lie, so we have the theorem: 

THEOREM 3. Let the points ak be given interior to C: \ z\ = 1, and let II 
be the smallest {closed) curvilinear polygon interior to C bounded by arcs 
of circles Y orthogonal to C, such that II contains each of the points akl 

and where each Y bounds a circular region containing in its interior no 
ak. Then II contains on or within it all the zeros of rf(z) interior to C, 
where r{z) is given by (1). 

Theorem 3 is the precise non-euclidean analogue of the classical 
theorem of Lucas that all the zeros of the derivative p'(z) of a poly­
nomial p(z) lie in the smallest convex polygon containing all the roots 
of p(z). For the function w = r(z) maps | z\ < 1 conformally in a 1-to-m 
manner onto \w\ < 1 , and is the most general function defining such 
a map, just as w = p(z) maps \z\ < <*> onto \w\ < <*> conformally in 
a 1-to-m manner, and is the most general function defining such a 
map. The derivatives of both r(z) and p(z) vanish precisely ra — 1 

* See Bôcher, loc. cit., Walsh, loc. cit. 
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times in the regions involved. The regions specified in Theorem 3 and 
Lucas's theorem are both the smallest convex sets containing the 
roots of the given function, in the respective senses of non-euclidean 
and euclidean geometry. The two theorems are respectively invari­
ant under arbitrary one-to-one conformai transformation onto itself 
of the non-euclidean plane \z\ < 1 and of the euclidean plane |2 | 
< o o . 

An arbitrary simply connected region R of the w-plane with more 
than one boundary point can be mapped conformally onto \z\ < 1 ; a 
function ƒ(w) analytic in R, whose modulus is continuous in the corre­
sponding closed region and constant on the boundary but not in R, 
corresponds under the map to a constant multiple of a function r(z) 
as defined by (1). Thus Theorem 3 yields the result that if non-eu­
clidean geometry is defined in R by means of the conformai map onto 
\z\ < 1 , then the zeros of f'(w) in R lie in the smallest non-euclidean 
convex polygon containing the zeros off(w) in R; it is a theorem due to 
Denjoy that the number of zeros of f'(w) in R is one less than the 
number of zeros of f(w) in R. Theorems 5-10 may similarly be gen­
eralized at once by a conformai map. 

If fixed points ce& interior to \z\ —r are given, the most general 
function analytic in \z\ <r, vanishing precisely in the points cê , 
whose modulus is continuous in | z\ ^r and equal to rn on | z\ = r> is 
given by 

•J^r Z — aie , , 

m^\Jl- —, I X I = 1; 
*- i 1 — âkZ/rz 

equation (1) is the special case r = l . When r becomes infinite, f(z) 
approaches the function p{z) =XQj-»10s — a*0î the derivative ƒ'(s) ap­
proaches pr(z)\ the zeros of f(z) in \z\ <r approach the zeros of 
pf{z) ; a variable circle through two fixed points z independent of r and 
orthogonal to |z | =r has a radius which becomes infinite with r, for 
the center of such a variable circle lies exterior to \z\ =r. Thus 
Lucas's theorem is a limiting case of Theorem 3. 

3. Both zeros and poles interior to C. Lucas's theorem admits of 
an extension to rational functions:* 

* Compare the theorems of Bôcher and Walsh already quoted; also M. B. Porter, 
Proceedings of the National Academy of Sciences, vol. 2 (1916), pp. 247-248; Walsh, 
Transactions of this Society, vol. 24 (1922), pp. 31-69; Marden, Transactions of this 
Society, vol. 32 (1930), pp. 658-668. The theorems of Bôcher and Walsh previously 
quoted are concerned with all the zeros and poles of the functions of the hypothesis, 
whereas Theorem 4 involves explicitly only the finite zeros and poles. But the former 
results contain the essential content of Theorem 4. 
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THEOREM 4. Let r(z) he a rational f unction of z with the finite zeros 
ai, a2, • • • , am and the finite poles /Si, ft, • • • , ft. If L is a line séparât-
ing each a3- from each ft, then no finite zero of r'(z) lies on L. Conse­
quently r if such lines L exist, all the finite zeros of rf(z) lie in two un-
hounded convex point sets which are separated hy every L and which 
contain respectively the points aj and the points ft. 

If all the points^ aj and all the points ft lie on a line, and if no aj 
separates a pair of the ft and no ft separates a pair of the a3-, then all 
finite zeros of r'{z) lie on that line, and lie on the smallest infinite seg­
ments containing respectively all the <Xj and none of the ft, and all of 
the ft and none of the aj. 

Theorem 4 has a precise analogue in the non-euclidean case: 

THEOREM 5. Let r(z) be a rational function of z with the zeros 
OLU a2, • • - , (xm and poles ft, ft, • • • , ft interior to C: \z\ = 1 , and the 
poles I/ah and zeros 1/ft exterior to C, and having no other zeros or 
poles. If L is a circle orthogonal to C, and if L separates each aj from 
each ft, then no zero of rf(z) lies on L interior to C. Consequently, if a 
circle L exists, all the zeros of r'(z) interior to C lie in two closed point 
sets III and n 2 which are bounded by circles orthogonal to C each of which 
separates all the aj not lying on it from all the ft not lying on it', these 
two point sets IIi and n 2 are separated by every L; they contain, respec­
tively, all the aj and all the ft. 

If all the points aj and all the points ft lie on a circle K orthogonal 
to C, and if no aj lies on an arc of K interior to C bounded by a pair of 
the fik, and if no fik lies on an arc of K interior to C bounded by a pair of 
the aj, then all the zeros of r\z) interior to C lie on K, and lie on the two 
arcs of K bounded by C which are the shortest arcs of K interior to C 
terminated at one end by C and containing respectively all the points aj 
and all the points ft. 

The function r(z) of Theorem 5 is the quotient of two arbitrary 
functions of the kind defined by (1). 

We shall establish Theorem 5 by means of the easily proved lemma : 

LEMMA 2. Let L be a circle orthogonal to C: \z\ = 1 , and let a particle 
of mass + 1 be situated at a interior to C but not on L, and a particle of 
mass — 1 be situated at 1/a. Then the corresponding f or ce at a point P 
of L interior to C has a nanvanishing component orthogonal to L in the 
sense directed from the side of C on which a lies. 

Lemma 2 may be proved at once by inversion in the unit circle 
whose center is P. Under this inversion let C, L, a, 1/â correspond, 
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respectively, to C', L', a', fa, so that L' is a line passing through 
the center of the (proper) circle C'; the points a' and fa are mutually 
inverse with respect to C' and are both separated or both not sepa­
rated from P by L', unless L is a straight line and consequently P 
lies on L'. But ce' lies exterior to C and fa interior to C'. The force 
at P due to the two given particles is represented by the sum of the 
vectors a'P and Pfa \ that is to say, is represented by the vector a'fa. 
The vector a'fa has a nonvanishing component orthogonal to L' , in 
the sense of the perpendicular from a' onto L'. This is equivalent to 
the statement of the lemma. 

The proof of Theorem 5 is now immediate. Let L be orthogonal to 
C and separate each a3- from each fa. Consider the field of force whose 
positions of equilibrium determine the zeros of r'(z). Then the force at 
a point P of L interior to C due to the particles a3- and 1/âj has a non-
vanishing component in the sense directed from the side of L on which 
otj lies. The force at P due to the particles /3/c and 1/fa has a non-
vanishing component in this same sense, so P cannot be a position of 
equilibrium. But P cannot be a multiple zero of r(z), and hence 
cannot be a zero of rr(z). Theorem 5 is established. 

Theorem 4 can be proved from Theorem 5 by a limiting process. 
Theorem 5 essentially includes Theorem 2, where the points fa of 

Theorem 5 do not exist. Theorem 2 may also be established from 
Lemma 2. Indeed, both lemmas as well as Theorems 2 and 5 can be 
proved from the fact that in the field of force due to two particles of 
masses equal in magnitude but opposite in sign, the lines of force are 
precisely the circles through those particles. The sense of the force at 
every point of such a circle is directed from the repelling particle 
toward the attracting particle. 

It follows that in the last part of Theorem 5 an arc of K interior to 
C bounded by two ak (or by two fa) and containing in its interior 
no ak or fa contains in its interior at least (as a matter of fact, pre­
cisely) one zero of r'(z). A similar remark applies to the Corollary to 
Theorem 2, to the latter part of Theorem 6, and under suitable con­
ditions to Theorem 8. 

Under the conditions of the last part of Theorem 5, it may occur 
that zeros of r!(z) lie on C but not on K, as we now show by means of 
an example. Let K be an arbitrary proper circle orthogonal to C, and 
let M denote the diameter of K through 0 : 2 = 0. Let «i be chosen on 
K interior to C but not on M, let fa be the inverse of a\ in M, which 
is also on K, and choose m = n = l. Considerations of symmetry and 
the fact that the lines of force due to the particles at a± and l/&i are 
circles through those points, show that the two intersections of M 
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with C are zeros of rr(z) ; but these intersections do not lie on the cir­
cle K. 

4. Derivative of a Blaschke product. The Blaschke product (as­
sumed convergent) defined by (2) is the limit for |z | < 1 of the se­
quence 

*»(* ) = 1 1 "J r 7> 
fc-i | au \ âkZ — 1 

and Bn(z) is of type (1). Convergence of Bn{z) to B(z) is uniform for 
\z\ ^ r < l , and convergence of the sequence BJl{z) to the function 
57(z) is also uniform in the closed region \z\ ^r < 1. If a point Zo with 
| So | < 1 is not a limit point of zeros of the functions Bl (z), it follows 
by a well known theorem due to Hurwitz that zQ cannot be a zero 
of B'(z). Consequently, we have from Theorem 2 the following theo­
rem:* 

THEOREM 6. If a circular region G bounded by a circle Y orthogonal 
to C: \z\ = 1 contains in its interior no point ak, then the region G con­
tains in its interior no zero of Bf{z) in \z\ < 1, where B(z) is defined by 
(2). 

In particular, if all the points ak lie on T, so also do all the zeros of 
B'(z) in \z\ < 1 . 

A somewhat simpler but less precise result than Theorem 6 is the 
next theorem : 

THEOREM 7. Let the points ak lie interior to a circle d which is tan­
gent to C: | z\ = 1 internally. Then all the finite zeros of Br{z) interior to 
C lie in G. 

For each n, all of the points au «2, • • • , an lie in a circle interior 
to but concentric with d ; so by Theorem 1 the zeros of the deriva­
tives of the corresponding partial product interior to C lie in the in­
terior of this smaller circle. Theorem 7 thus follows from Hurwitz's 
theorem. 

A similar method of proof yields an analogue of Theorem 5 : 

THEOREM 8. Let B{z) be the Blaschke product (2), and let 

^ - n T T r f ^ T ' 1*1<J' 
fc=l | Pk I PkZ ~ 1 

* It is to be remarked in connection with Theorem 6 that an arbitrary function 
f(z) analytic and bounded for \z\ < 1, which has boundary values of constant modulus 
for normal approach to \z\ = 1 , is a constant multiple of a Blaschke product of 
type (2). 
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also be a convergent Blaschke product. If L is a circle orthogonal to 
C: I z\ = 1, and if L separates each aj from each /3&, then no zero of rr(z), 
where r(z) = B(z)/D(z), lies on L interior to C. Consequently, if such a 
circle L exists, all the zeros of r'(z) interior to C lie in two closed point 
sets IIi and Iï2 which are bounded by circles orthogonal to C each of 
which separates all the <Xj not lying on it from all the fik not lying on it ; 
these two point sets II1 and II2 are separated by every L\ they contain 
respectively all the a3- and all the ft. 

In Theorem 3 we have emphasized the location of the zeros of 
r'(z) interior to C. This is no actual restriction, for each result applies 
effectively also to the zeros of r'(z) even exterior to C. For instance if 
we set n(z) = l/r(l/z)> where r(z) is represented by (1), we have 

1 ™ z - âk . 

'ito ^ T - n > |a*| < l, 
A Jfc-l 1 — OLkZ 

so that Theorem 3, for example, applies to the function ri(z), and 
yields results on the zeros of r'(z) exterior to C. In fact, all finite 
zeros of r'{z) exterior to C lie in the inverse with respect to C of the 
polygon II of Theorem 3. But if no ak vanishes, the derivative r'(z) 
vanishes at infinity whether or not the point at infinity lies in the 
inverse in C of the polygon II. 

A remark similar to the one just made applies not only to Theorem 
3 but also to Theorems 5, 6, 7, and 8. But the present results do not 
treat directly the zeros of r'(z) on C in Theorems 5 and 8. 

A linear transformation of the complex variable which transforms 
C: \z\ = 1 into the axis of reals yields for Theorems 1-3, 5-8 analo­
gous results on the derivatives of functions of the forms 

A 2-aife * z - ak 

1 1 > 1 1 
fc-i s — ak k=i z — âk 

5. Critical points of harmonic functions. By methods that the pres­
sent writer has developed elsewhere,* the new results just established 
can be extended to apply to the critical points of harmonic functions. 
The detailed proof, which we leave to the reader, may be based di­
rectly on the theorems already proved. 

THEOREM 9. In the extended plane let C be a circle, let the Jordan 
curves C(, C(, • • • , CI not intersect C, all lie on the same side of C, and 
be respectively symmetric to the Jordan curves C{', CI1

 y • • • , CI' with 

* Proceedings of the National Academy of Sciences, vol. 20 (1934), pp. 551-554. 
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respect to C. Let no two of the curves Cj, and no two of the curves Ci' 
intersect, and let the totality of those curves constitute the complete bound­
ary of a region R. Let the function u(x} y) be harmonic in the interior of 
R and continuous in the corresponding closed region, and let u(x, y) take 
on the value unity on every CI and the value minus unity on every CI'. 

(1) If G is a region bounded by a circle Y orthogonal to C, and if G 
contains in its interior no point exterior to R, then G contains in its 
interior no critical point of u{x, y). 

(2) If a circle Kr separates all the curves CI from C, then K' sepa­
rates precisely v — \ critical points of u(x, y) from C; the inverse K" 
of K' in C separates precisely v—1 critical points of u(x, y) from C. 

THEOREM 10. In the extended plane let C be a circle, let the Jordan 
curves C{, CI, • • • , CJ[, K{, Ki, • • • , Ki not intersect C, all lie 
on the same side of C, and be respectively symmetric to the Jordan 
curves CI', Ci', • • • , CM

/;, K{', Ki', • • • , Ki' with respect to C, Let no 
two of the curves C{, • • • , CM', K{, • • • , Ki intersect, and let the total­
ity of the curves Cj , Kj, C/', K/' constitute the complete boundary of 
a region R. Let the function u(x, y) be harmonic in the interior of R and 
continuous in the corresponding closed region, and let u(x, y) take on 
the value unity on every Cj and Kj' and the value minus unity on every 
Cj' andKj. 

If L is a circle orthogonal to C, and if L separates each Cj from 
each Kl, then no critical point of u(x, y) lies on L but not on C. Con­
sequently, if such a circle L exists, the critical points of u{x, y) not on C 
lie in two regions IIi and n 2 which are bounded by circles L' orthogonal to 
C each of which separates {except for points of intersection with L') each 
Cj from each Kk , and each Cj' from each Kl'. The regions IIi and n 2 

are separated by every L; they contain, respectively, all the Cj and Cj', 
and all the Kj and Kj ' . 

In Theorem 10 we may make the convention that the case J> = 0 is 
not excluded, and that the corresponding restriction on L is that L 
shall intersect no Cj and shall separate no two of the circles Cj. If 
this convention is made, Theorem 10 includes the essence of Theo­
rems 1, 2, 3 ,4 , 5, 9, and by a limiting process may be used to prove 
also Theorems 6,7, and 8. 

Theorems 9 and 10 extend to certain situations in which the bound­
ary of the region R has a finite or infinite number of components 
which are not necessarily Jordan curves. 

HARVARD UNIVERSITY 


