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The present note is concerned with the proof of a simple property 
of the Weierstrass -E-function which, so far as the authors know, has 
not been pointed out before. For the sake of generality, the result 
will be given for the general problem of the Lagrange or Bolza type. 
The result for such a problem in non-parametric form is given in 
Theorem I below, and the analogous result for the parametric prob
lem is presented in Theorem II . 

For the non-parametric problem let f(x, 3>i, • • • , yn, Pu ' • • > pn) 
=ƒ(#> y y P) denote the integrand function and #«(#, y, p), (a = 1, • • • , 
m<n), the auxiliary expressions.f It will be assumed that the func
t ions/ , (j>a are continuous and have continuous derivatives of the first 
two orders in a region J ^ of (x, y, p) -space. By an admissible set 

O, yh • • • , y ay pi, • • • , pn, Xi, • • • , Xm) = O, y, p, X) 

will be meant one such that (x, y, p) is in ^ and satisfies the equations 
<pa = 0. Let F(x, y, p, X) =f{x, y, ^)+Xa0«(x, y, p). Here and elsewhere 
in this note the tensor analysis summation convention is used. 

THEOREM I. Suppose N is a region in (x, y, p, X)-space such that 
at each admissible set (x, y, p,\) of N the inequality 

E(x, y, p, X, q) = F(x, y, q, X) - F(x, y, p, X) 

- (?< - PÙ FPi{x, y, p,\)^0 

holds for every set {qi) for which (x, y, q, X) is admissible. If the matrix 

(2) 
4>avj 0-5tt/9 

i, j = 1, • • • , n;a, 0 = 1, • • • , mf 

* Presented to the Society, December 30, 1938. 
f For a more detailed formulation of the problems of Lagrange and Bolza the 

reader is referred, for example, to Bliss, The problem of Lagrange in the calculus of 
variations, American Journal of Mathematics, vol. 52 (1930), pp. 673-742, Morse, 
Sufficient conditions in the problem of Lagrange with variable end-conditions, American 
Journal of Mathematics, vol. 53 (1931), pp. 517-546, or Bliss, The Problem of Bolza 
in the Calculus of Variations, mimeographed notes of lectures delivered winter, 1935, 
at the University of Chicago. 

% By "region" we shall understand "open region." It is to be noted that in the 
following theorems no use is made of the region's being open with respect to the 
ix, y) or iy) variables. Consequently, the hypotheses of the theorems could be 
weakened in this respect. 
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is nonsingular at each admissible set (x, y, p, X) in N, the equality in (1) 
holds only in case pi = q^ (i = 1, • • • , n). 

For suppose that the equality in (1) holds for a particular admissi
ble set (xot yo, poy Xo) of N and a set g0 with (x0, 3>o, <Zo, X0) admissible. 
I t would then follow that (p0, Xo) affords E(x0, y0i p, X, q0) a minimum 
relative to neighboring sets (p, X) for which 4>a(x0, y a, i>)=0, 
( a = l , • • • , m). Consequently, by the Lagrange multiplier rule,* 
there would exist multipliers la such that at (x0, 3>o, Po, X0, qo) we have 

EPj + laöapj = 0, Exa = 0, j = 1, • • • , w; a = 1, • • • , m\ 

that is, 

( 3 ) "~ (QiO ~~ Pio)FPiPj + la<t>aPj = 0 , — (^iO — pio)<t>aPi = 0 . 

But in view of the nonsingularity of the matrix (2) at admissible 
sets in N, these equations imply qio = pio, la~0; hence the theorem is 
established. 

For the problem of the calculus of variations in parametric form, 
the functions/, <j>at (a = l, • • • , m<n — l), are assumed to be inde
pendent of the variable x and to be positively homogeneous of degree 
one in the variables pi. It is also assumed that these functions are 
continuous and have continuous derivatives of the first two orders 
in a region ^ of (y, £)-space which is such that if (y, p) is in %_ then 
pipi^Oy and, moreover, the point (y, kp), (k>0), is also in ^ . An 
admissible set (y, p, X) is defined in a manner analogous to that used 
above. One has the well known relations 

F(y, P, X) = piFpiiy, p, X), *«(y, P) = pi<t>aPi(y, p)t 

(4) 

piFPiPj(y, p, x) = o, 

Fpiiy, kp,\) =F9i(y,P,\), 
k > 0; i, j = 1, • • • , n; a = 1, • • • , m. 

From the second and third relations of (4) it follows that at an ad
missible set (y, p, X) the matrix (2) is singular. It is also a consequence 
of (5) and the first equation of (4) that 

(6) E(y, p, X, q) = qi[FPi(y, q, X) - FPi(y, p} X)], 

(7) £(y, kp, X, k'q) = fe'JS(y, p,\q), k > 0, V > 0. 

THEOREM I I . Suppose N is a region in (y, p, X)-space such that at 
each admissible set (y, p,\) of N the inequality 

* See, for example, Carathéodory, Variationsrechnung, p. 116. 
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(8) £(y, p, X, g) è 0 

holds at every set (gi) for which (y, q, X) is admissible. If the matrix (2) 
is of rank n+m — 1 at each admissible set (y, p, X) in N9 the equality 
in (8) holds only in case q% — hpi, (&>0). 

Suppose the equality in (8) holds for a particular admissible set 
(yoi Poy Xo) of N and a set g0 with (3/0, qo, X0) admissible. In view of (7) 
we may assume that piopio = l, 2*02*0 = 1- Proceeding as in the proof 
of Theorem I, we find that at the set (y0, po, X0, qo) equations (3) 
hold. By virtue of relations (4) and the fact that the matrix (2) is of 
rank n+m — 1 at (yo, po, X0), equations (3) imply qio = hpi0, /a = 0; 
moreover, since piopio = l, 2**o2*'o = l, we have h= ± 1 . The inequality 
in (8) holds, therefore, for every set (y, p, X, q) satisfying pipi = l, 
qiqi=l, (2*) 9^ ± (/>»•)» Cy> A X) an admissible set in N, (y, qy X) an ad
missible set. But from the form (6) of E(y, p, X, q) one readily verifies 
that if (3/0, —po) is in ^ , then 

(9) £(y0, po, Xo, - £0) = E(y0, r, X0, - #0) + E(y0} r, X0, #0) 

for every set r such that (y, r) is in î^. In particular, since (yo, po, Xo) 
is an admissible set in N9 it follows from the usual implicit function 
theorem that there exists a neighboring admissible set (yo, rf Xo) in N 
such that fVi= 1, (r»«) F^ ± (/>»o). When this value of r is substituted in 
(9), it is found that -E(y0, po, Xo, — £0) > 0 if (yo, — po, Xo) is admissible. 
Consequently, whenever (y, £, X) is an admissible set in N, (y, 2, X) 
is an admissible set, and pipi = \i 2*2» = 1, the equality in (8) holds if 
and only if pi = q%. From relation (7) this result is readily seen to be 
equivalent to the conclusion of Theorem II . 
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