
THE DIRICHLET PROBLEM FOR THE 
VIBRATING STRING EQUATION 

D. G. BOURGIN AND R. DUFFIN 

This note considers the Dirichlet and Neumann type boundary 
value problem for the simple vibrating string equation. The detailed 
study for a special boundary is timely in view of certain categorical 
statements in the recent literature.* The results obtained below indi­
cate how such statements are to be modified.f Of independent inter­
est is the novel procedure, stemming from Lemma 1, for proving 
uniqueness in Theorems 1 and 2. The method is of wide utility and 
leads to interesting generalizations. 

For convenience we use t for vr, where v and r refer to the velocity 
of wave propagation and the time, respectively. The string equation 
is then 

(1) L[y] s yxx - ytt = 0, 

and the data are given on the boundaries of the finite rectangle 

(1.1) OS %^S, O^t^T. 

We denote the ratio T/S by a. The term "rectangle," used in the 
sequel, unless otherwise qualified, refers to the closed rectangle de­
fined in (1.1). 

We shall need the following lemma. 

LEMMA 1. If y(x, t) is continuous in both real arguments in the rec­
tangle, and if F(p, u) is defined as 

(2) F(p, « 0 = 1 I ei(>xp+ut)y(x, t)dxdt, 
J o J o 

then F(p, u) is an entire function in each of the complex variables p and u. 

* For example: "Dagegen wiirde ein Randwertproblem im Falle unserer hyper-
bolischen Differentialgleichung (our (1)) sinnlos sein," Courant-Hilbert, Methoden 
der Mathematischen Physik, vol. 2, p . 178. ". . . le problème de Dirichlet ne peut se 
poser pour le cas hyperbolique," J. Hadamard, L'Enseignement Mathématique, vol. 
35 (1936), p . 26. Some of Hadamard's surmises are not borne out for the special 
situation we treat . Cf. pp. 26, 29 and notes on p. 29, loc. cit. 

t In "principle," a physical realization of the Dirichlet problem is afforded by 
taking photographs of a vibrating string at two different times. However, "practi­
cally," our analysis is entirely ineffective, not for the reason of overdetermination 
(as in the illuminating instance on which Courant founds his mathematical conclu­
sion) but because of the physical unpreciseness and inconstancy of the all important a. 
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The lemma is easily established even for less restricted y(x, /).* 

THEOREM 1. Let y(x, t) be a solution of (1) in the interior of the rec­
tangle and let y(x, t) vanish on the boundary. Furthermore, y(x, i) is to 
be of class C'f in the closed rectangle and yxx and yu are to be Lebesgue 
summable over the rectangle. Then, in order that the solution y(x, t) = 0 
be unique, it is necessary and sufficient that a be an irrational number. 

We take up the "sufficiency" aspect first. Our hypotheses justify 
the application of Green's theorem^ to (1) in the form 

I [eHpx+ut)L[y] — yL[eHpx+ut)]}dxdt 
o J o 

(3) :(P* - U*)F(P: «)= f ( 
•/ o 

f 
J o 

ei(px+ut)(yt(x, t) — iuy(x, /))) dx 

(eHP*+»»(yx(x, t) - ipy{x> t))) 

*=0 

x=S 

dt. 

On setting y = 0 on the boundary, we obtain in the notation of (2) 

(p* - u*)F(p, u) 

(3.1) ƒ> S \t=T s*T 

ei(px+ut)yt(X) /) dx - I ei(px+ut)yx(x, t) 
o lt-o J o 

:-S 

dx. 

Since F(p, u) is entire, according to Lemma (1), the left side of (3.1) 
vanishes for p= ±u. Therefore 

ƒ» S I t=T /» T 

(eiu^+x)yt(xy /)) dx- \ (eiu(t+x)yx(x,t)) 
0 |«=0 ^ 0 

(3.21) f 
J o 

(eiu{t-x)yt{x, t)) 

o 

dx — I 
t=o J o 

(eiu{t~x)yx(x,f)) 

x=S 

x=0 

x=S 

dt = 0, 
i 

dt = 0. 

On subtracting these equations and taking the real part, there results 

(3.3) sinuT 
/

yt(x, T) si 
o 

sin uxdx — sin uS J yx(S, t) si 
0 

sin utdt = 0. 

In view of the incommensurability of T and S, the special choices 
u = nw/T and u = nir/S imply 

* Theorem 5.31, Whittaker and Watson, Modern Analysis, 3d edition, is the main 
tool. 

t Class Cn implies continuity in all arguments through derivatives of order n. 
I The essentials of the argument are given in Horn, Partielle 

chungen, 2d edition, p. 107. 



!939l THE DIRICHLET PROBLEM 853 

(3.4) I yx(S, t) sin mct/T dt = I yt(x, T) sin mrx/S dx = 0. 
J o J o 

We may extend yt(x, T) to all values of x by requiring it to be an 
odd periodic function of period 25. This extended function is at worst 
piecewise continuous and summable and accordingly admits of a 
Fourier sine expansion, summable C1.* According to (3.4) the Fourier 
coefficients vanish. The supposed continuity in the range OSx^S 
allows the deduction yt(x, 7 , )=0 . t Similarly yx(S, / ) = 0 . The sym­
metry of the problem then guarantees the vanishing of yt(xf 0) and 
yx(0, t)4 I t follows from (3.1) that 

(3.5) F(P,u) = 0 

if PT* ±u. This latter restriction may be waived, however. In fact, 
consider an arbitrary value of u and denote it by u0. F{py u0) vanishes 
for all points in any open neighborhood of p = u0 in the complex p 
plane, except, possibly, for p = u0. However, since F(p, u0) is analytic 
in p, it follows that F(uQl u0) is also 0. Similarly F( — u0, UQ) = 0. Hence 
the deduction (3.5) is valid for all finite p and u. For our present 
purpose we may consider y(x, i) to be 0 for all points outside the 
fundamental rectangle. Then F(p, u) is an identically vanishing 
Fourier transform of y(x, t) whence y(x, t) =0.§ 

The necessity is easily verified. Indeed if a is rational we have the 
nonidentically vanishing solution 

y(%} t) — sin nirx/S sin mrt/S, 

where n and na are integers. 
For the case envisaged in Theorem 1 it is worthwhile to remark an 

alternative proof which, though not directly capable of extension to a 
more general equation, may clarify the physical situation. Our start­
ing point is the classic solution of (1), namely 

(4) 2y(x, t) = y(x + t, 0) + y(x - *, 0) + g(x + t) - g(x - / ) , 

* E. C. Titchmarsh, Theory of Functions, pp. 414 and 426. 
t Since we now have established vanishing Cauchy data on the upper side of the 

rectangle we can appeal to the theory of the so-called "mixed" problem to gain the 
conclusion in our theorem. However, it is of interest to carry through the method 
predicated on Lemma 1 to show its power and completeness. 

t Alternatively we may take the real part of the difference of equations (3.2) 
and (3.21), and also the imaginary part of their sum. With the justifiable defini­
tion of yt(x, 0) and ^ ( 0 , t) as odd periodic functions of x and t, with periods 2S and IT 
respectively, one then easily derives yt(x, 0) = ^ ( 0 , t) = 0 as a consequence of yt(x, T) 

§ S. Bochner, Vorlesungen iiber Fourier Integralen, p. 192. 
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where 

gO) = I yt(%, o)dx. 
J o 

Now yt(x, 0) is of class C° and may be considered odd and periodic 
on the x axis with period 25. Since g(z) is the integral of an odd peri­
odic function it is itself periodic with the same period 2S. 

The identical vanishing of y on the boundary implies 

(4.1) 0 = g ( * + r ) - g ( * - D . 

Thus g(z) has a second period, 2T. Accordingly 

(4.2) g(2nT + 2mS) = g(0) 

for all integer values of | n | and | m | . Since T and 5 are incommen­
surable it follows that , for arbitrary x and e, positive or negative 
integers ft and m may be found such that 

(4.3) | x + 2nT + 2mS\ < e. 

Relation (4.3) is, in fact, an immediate consequence of the well known 
Kronecker inequality. Thus the points {2nT+2Sm} are everywhere 
dense on the interval 

(4.4) - s - r ^ s g s + r . 
Manifestly g(z) is continuous on the interval defined in (4.4). Since 
a continuous function on an interval is determined uniquely by its 
values on a dense set of points, it follows from (4.2) that 

(4.5) g(z) = g(0) 

for all z in the interval in question. It is now seen that (4) guarantees 
y{x, t)=0. 

We may also establish uniqueness in the case of the Neumann prob­
lem (or more generally, for the case that Dirichlet data are given on 
some sides and Neumann data on the others). For instance we have 
the following result. 

THEOREM 2. Let y(x, t) be a solution of (1) for interior points and be 
of class C1 in the rectangle, with yxx and ytt summable over the rectangle. 
Furthermore, let yt and yx vanish on the horizontal and vertical sides of 
the boundary', respectively. Then irrationality of a is the necessary and 
sufficient condition that the only solution satisfying our hypotheses be a 
constant. 

The necessity follows from the observation that, for rational a, 
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y(x, t) = cos mrx/Scos nirt/S 

is a solution for values of n such that na is also an integer. 
The demonstration of sufficiency requires, merely, obvious modifi­

cation of the analysis in our first method of proof of Theorem 1. Thus, 
on setting p = ±u in (3) we obtain as the analogues of relations (3.2) 
and (3.21), 

eiu(x+t)y(Xj j) dx= I eiu<x+t)y(x, t) 
o |<—o J o 

ƒ• s I t=T /» T 

eiu(x-t)y(Xf fy\ dx= I «*u<*-|>y(o?, t) 
0 l«—IO J 0 

J/, 

x=8 
dt. 

Manifestly we may take y(x, 2"), ;y(x, 0), 3/(S, £), ;y(0, /) as even periodic 
functions of periods 25 and IT according as the variable argument 
is x or /. Formulas (5.1) and (5.11) imply 

(5.2) sin uT I cos ux y(x, T)dx = sin uS I cos ut y(S, t)dt. 
J 0 J Q 

The choices u = mr/S and u = nw/T show that the integrals on either 
side vanish for all positive integers n and are unrestricted for n = 0. 
We may paraphrase an earlier argument to deduce that y(xy t) is a 
constant K on the boundary. On evaluation of the boundary inte­
grals, (3) now yields 

F(p, u) = K(eiuT - \){e^8 - l)/up. 

This is the transform of a function vanishing outside the rectangle. 
Inside and on the boundary 

(5.3) y(x,t) = K. 

The restriction tha t y be of class C1, coupled with the almost every­
where equivalence of two Lebesgue summable functions having the 
same transform, implies that (5.4) is unique. 

THEOREM 3. Let y(x, t) satisfy all the conditions imposed in Theorem 
1 save that the boundary values are now arbitrary functions of class C1 

which vanish at the four corners. Then if a is irrational^ a solution 
y(x, /), if it existsf is unique. 

The demonstration is along conventional lines. Suppose y\ and y^ 
are distinct solutions. Define y* by y* = yi—y%. Clearly y* satisfies the 
hypotheses of Theorem 1 whence it follows that y\ and y2 are identi­
cal. 
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The ratio a plays a determining role in the demonstration of actual 
existence of solutions. Our attention will be focussed on a values satis­
fying the inequality (E) 

(E) | a - m/n\ > A/n**1, 

where A and K are fixed, m, n, K are positive integers and meloen. 
The algebraic numbers of degree K + l satisfy (E). Moreover the set 
of a values which do not satisfy (E) for any choice of K is known to 
be of linear Lebesgue measure zero.* 

LEMMA 2. If a satisfies (E), then for each integer N, sufficiently 
large, there is associated an integer M'\ depending on N, such that 
l/2N>\l/a-M'/N\ >B/NK+K 

We replace n by M and m by N in (E). Clearly we may select a 
"best" M, denoted by M', for each N in the sense 

(6) | a - N/M | £ | a - N/M' |, M * M'. 

For NQ sufficiently large and fixed 

(6.1) 2a > N/M' > a/2, N > N0. 

Hence by (E) and the defining relation (6) for M', we plainly have 

1/2N è | 1/a - M'/N | = | a - N/M' \ M'/aN 
} A / N\K / 

^ — f—-) /N*+l = B/NK+1, N > N0) 

whereB = (A/a)(a/2)K. 
The assigned boundary functions y(x, 0), y(x, T) on the two hori­

zontal sides of the rectangle of (1) may be extended to all x values by 
requiring the extended functions to be odd and periodic of period 2S. 
Similarly the extended functions y(0> t), y(S, t) are odd and periodic 
of period 2T. It is in this sense that subsequent references to "ex­
tended boundary functions" are to be understood. 

THEOREM 4. If (a) a satisfies (E) for a fixed K and if (b) the four 
extended boundary functions are of classf C*+K for —S^x^S or 
— TStSTy then there exists a unique solution y(x, i) of (1), satisfying 
the boundary conditions, such that (c) yxx and ytt are summable over the 
rectangle and (d) y is of class C1 in the rectangle. This solution is ac­
tually of class C2 in the rectangle. 

* E. Borel, Théorie des Fonctions, 3d edition, p. 27. 
t The condition on the (2£-j-4)th derivatives may evidently be weakened. 
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Condition (b) implies that the boundary functions may be ex­
panded in Fourier sine series. Furthermore 

(7) an,An, bny Bn = o(n~*-K)* 

where the constants on the left side of (7) are the nth coefficients in 
the sine series expansions of y(x, 0), y{x, T), y(0> t) and y(S> /), re­
spectively. For any n we may find m' depending on n, such that 

(7.1) \an- mf\ < 1/2. 

Then for n^tio^max (3, AllK), 

(7.2) | sin mra | =' | sin ir(na — m') | ^ | sin irA/nK | ^ A/4nK, 

In view of Lemma 2 we may establish in a similar way 

(7.3) | sin mr/a\ ^ B/knK, n ^ n\. 

We assert that a solution satisfying the conditions of our theorem 
is given by 

, (an sin (nw(T — t)/S) + An sin nwt/S 
y(x9 t) = ^ < ; sin mrx/S 

\ sin mra 
(7.4) 

bn sin (nir(S — x)/T) + Bn sin {mrx/T) \ 
_| . s m nirt/T > . 

sin mr/a ) 
The right side of (7.4) formally satisfies (1). In view of (7), (7.2), and 
(7.3) it is clear tha t 

Bn (7.5) 
sin mra 

o{n~A). 
sin nir/a 

This implies that the right side of (7.4) is the sum of four uniformly 
convergent Fourier series and these series remain uniformly conver­
gent on differentiation twice by either x or t. Accordingly, the four 
formal series on the right side of (7.4) are Fourier series defining func­
tions certainly of class C2 in the rectangle. Thus yxx, ytt are summable. 
Finally, no other solution of our problem of class C1 with summable 
yxx and ytt in the rectangle can exist, according to Theorem 2. 

Incidentally, the form of (7.4) indicates that if a is rational, then 
a necessary condition for the existence of a (non-unique) solution is 
that Av = a„ cos vira, By. — by. cos /X7r/ce, where v and ju are integers such 
that va and fi/a are also integers. 

Hypothesis (b) of Theorem 4 is a sufficient but by no means neces­
sary condition. Consider for instance, for ce<l , 

* Titchmarsh, loc. cit. 
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y(x,t) = x(T - S - t)(x2 + (T - ty - 2S(T - t)); O g x^T-t, 
(8) 

= (x _ S)(T - t)(x2 + (T - t)2 - 2Sx); T - t ^ x ^S. 
Independently of the value of a, y(x, 0) is merely of class C2, yet 
y(x, t) is a solution of class C2. 

Nevertheless some such hypothesis as (b) must be admitted to 
guarantee existence of the required solution in all cases. We take 
A=\ and denote by K' +1 the smallest integer K for which a satisfies 
(E) except, possibly, for a finite number of values of n. We shall 
suppose Kr ^ 3 in the sequel. Accordingly there exists an infinite num­
ber of pairs of values of n and m, denoted by ni and m,-, such that 

(8.1) | a - mil ni \ < l/n*'+K 

Hence for U{ > 3 

(8.2) | sin UiTa\ ^ ir/fiiK', | cot nura | è np'/lir. 

We take Dirichlet data vanishing except on the base and the fol­
lowing coefficients, any in the Fourier sine expansion of y(x, 0): 

(8.3) Ont = V»i* / + i , ^n = 0, n^fti. 

Thus the extended y(x, 0) is certainly of class CK'~l. Suppose a solu­
tion y(x, t) of class C2 exists. I t is easily shown then by an argument 
based on (4) for instance, if we bear in mind the prescribed vanish­
ing of y(x, t) on the vertical sides, that yt(x, 0) may be extended to 
an odd periodic function of class C°. Moreover yt(%, 0) is of class C1 

on the base of the rectangle. Accordingly y(x, t) and yt(xy 0) are ex­
pansible in absolutely and uniformly convergent Fourier series lack­
ing the terms cos irnx/S. The nonzero Fourier coefficients, al for 
yt(x, 0) must be 

(8.4) an. = — 7r(cot nurd)jSng*'. 

In view of (8.2) 

(8.5) \ani\ > 1/25. 

This contradicts the deduction tha t the {an' } are Fourier coeffi­
cients. Hence y(x} t) cannot be of class C2 in the rectangle. Therefore 
hypothesis (b) cannot be weakened to admit data of continuity class 
inferior to CK' and, indeed, if X ' ^ 4 an obvious extension shows that 
the lowest class is CK'+l a t least. 
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