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Introduction. Let y be a differential field of characteristic zero, f 
We consider an infinite system 2 of differential polynomials in the 
letters 3/1, • • • , yn, the coefficients of the differential polynomials be
ing in J . J 

A finite set <ï> of forms in S is called a basis of 2 if, for every form G 
in S, there is a positive integer p, dependent on ö, such that Gp is in 
the differential ideal of <3>. If a single p will serve for every G in 2 , 
then we shall call the basis strong. 

It has been shown that every system has a basis. § Raudenbush has 
shown further, || that there exist systems, not every basis of which is 
strong. It is now natural to ask whether or not every system of forms 
contains at least one strong basis. 

We answer this question in the negative by showing that even a 
perfect differential ideal of forms may have no strong basis. The per
fect differential ideal with which we work is the one generated by the 
form uv in the two unknowns u, v. 

We employ several ideas used by Raudenbush in the second of his 
above mentioned papers. 

1. The assumption. Consider a formal G every term of which is di
visible by some UiVj** Let 2 be the set of all such forms G. Then 2 
is a differential ideal, and is perfect. For, if a form has a term free of, 
say, every Ui, then every power of the form will have such a term. 

* Presented to the Society, February 25, 1939. 
f For the definition of differential field, and other terms, see H. W. Raudenbush, 

Ideal theory and differential equations, Transactions of this Society, vol. 36 (1934), 
pp. 361-368. 

$ Throughout the rest of this paper we shall use, as is customary, the term form 
for differential polynomial. 

§ For differential fields of meromorphic functions this was essentially shown by 
J . F . Ritt in his book Differential Equations from the Algebraic Standpoint, American 
Mathematical Society Colloquium Publications, vol. 14, New York, 1932. See espe
cially §§ 7, 77. Following the work of Ritt , Raudenbush treated the case of the 
general differential field of characteristic zero by purely algebraic methods. See 
Raudenbush, loc. cit. 

II On the analog f or differential equations of the Hubert- Netto theorem, this Bulletin, 
vol. 42 (1936), pp. 371-373. 

1T For J we can use any differential field of characteristic zero. 
** Subscripts denote derivatives. 
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I t is easy to see that S is the perfect differential ideal generated by uv. 
If 2 has a strong basis* then it has one consisting purely of forms 

UiVj. 

Let 

(1) UiVj, i + j <L s, 

be a strong basis for S, and let p be the associated positive integer. 
We work toward a contradiction. 

We denote by a a positive integer to be fixed later. 
Consider the set of all forms 

(2) uhvh • • • uipv,-p9 ii+ji+--'+ iP + j P = a. 

Every such form has an expression S - i c t / ( Z L i % ^ i ^ u ) p > where r 
is some positive integer, and the cg and the agn are rational numbers.* 
Therefore, by our assumption on the nature of the basis (1) and the 
integer p, every form (2) is in the differential ideal generated by the 
forms (1). 

Hence each form (2) is a linear combination, with coefficients in F, 
of forms 

,3) (UiVj)kUhVh . • • Uip^Vip^19 

i + j ^ s9 i + j + k + h + j \ + • • • + v- i + jp-i = a-

Since the forms (2) are all linearly independent over J, it follows that 
the number of distinct forms (2) cannot exceed the number of dis
tinct forms (3). 

We denote the number of distinct forms (2) by RP,a, and the num
ber of distinct forms (3) by Qp,a. We thus have Rp,a^QP,a. 

In the next section we force the contradiction that Rp,a>QP,a for a 
sufficiently large. 

2. The contradiction. We consider those expressions (2) for which 
ii+ji = v, (OSV^OL). The coefficient of UilVjl in (2) is then 

(4) ui2vh • • • uipv,-p, i2 + J2 + ' - - + iP + j P = a - v. 

The number of distinct forms (4) is i?p_i,a_y, and therefore the num
ber of distinct symbols f (4) is not less than Rp^i,a-v. Since the number 
of expressions u^v^ with ii+ji = v is P + 1, the total number of sym-

* We can solve the equations (wi-\-\w2)
t~X^»„OCM^WI'~*W2\ (X=l , * • • , t+l), 

for WiW2t~1
i obtaining Wiw2

t~l = ] L X = I d\(wi-\-\w2)
t. Using this special case, we can show 

by induction that W\ • • • w J , = X ^ = i ^ C ? = i a ^ w / l )
î > . Setting Wh — UihVjh1 we obtain the 

desired representation of the forms (2). 
t Two distinct symbols (4) may represent the same form. 
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bols (2) is not less than ]T)JL0(v+l)Rp-i ta-v. But not more than (pi)2 

distinct symbols (2) can represent the same form. Hence 

(5) RP,a è (i>!)-2Z (v + l) i^_i,«_,. 

We now show that there exist positive numbers bpy (p = 1, 2, • • • ), 
independent of a, such that 

(6) RP,a^ bp(a+ I)**-*. 

Obviously 2?i,«=a + l, so that (6) holds for p = 1. Suppose (6) holds 
for p = rn — l. Then, by (5), using [x] to denote the greatest integer 
not exceeding x, we have 

Rm,« ^ (nil)-2Y, (" + l)»«-i(« - v + l ) 2 - 3 

[3«/4] 

^ (m\)-2bm-i Z (" + 1)(« - " + l)2w~3 

v=[a/4] 

[3a/4] 

^ (w!)-2^_! 2 ([a/4] + l)(«/4 + l)2w~3 

*- [a /4 ] 

^ (m!)-2^_!(2[a/4] + l)([a/4] + l)(a/4 + l)2m~3 ' 

^ W « + l)2w~S 

where &«=(m!)-24:-2m&m-.i. Thus (6) holds for all p. 
We now consider those expressions (3) for which i+j+k=ix, 

(O^jjL^a). The number of distinct expressions (uiVj)k with i+j+k =/x 
and with i+j^s does not exceed (s + 1)2. The coefficient of (u&j)k in 
(3) is uhvh • • • Uiv_j)iv_x, (ii+ji+ • • • + v - i + j p _ i = a—/*). Since the 
number of distinct forms of this kind is Rp-i^-n, we have for the total 
number of distinct forms (3) : 

(7) QPta£ E ( * + 1)2^-1,«-M. 

We shall show that, for p — 1, 2, • • • , 

(8) * , , « £ ( a + 1 ) 2 ^ - 1 . 

For since JKi,a = a + l, (8) holds for £ = 1. Suppose (8) holds for 
p = rn—l. Looking at (2), it is easy to see that 

a 

Rm,a ^ Z^t (v + l ) i ? w ~ l , a ~ r » 
»>=0 
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Therefore 

a 

Rm,a ^ Z 0 + 1)(« - y + l)2m-3 

a 

^ Z (« + 1)(« + l)2m~3 = (« + I)2""1. 

Thus (8) holds for all £. 
Using (8) in (7), we find 

e,.«^ (^+i)2i:(«-M + i)2^3, 

so that 

G*.« ^ (* + 1)2(« + I)2*"2. 

Comparing this with (6), we see that, for a sufficiently large, 
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