
RELATIONS AMONG THE FUNDAMENTAL SOLUTIONS 
OF THE GENERALIZED HYPERGEO METRIC 

EQUATION WHEN p = q+l 

II. LOGARITHMIC CASES* 

F. C. SMITH 

1. Introduction. In a previous paper [ l ] , the author gave the rela
tions among the non-logarithmic solutions of the equation 

(1) 
/ <Z+1 I <Z+1 ^ 

i I I (* + «t) IL(0 + ct-l)>y = 0 
\ t=i z *=i / 

where 6 = z(d/dz) and where the at and ct are any constants, real or 
complex, the only restriction being that one of the ct must be equal 
to unity. If no two of the at or ct are equal or differ by an integer, 
then equation (1) has <Z + 1 linearly independent solutions about the 
point 3 = 0 which may be written 

«+1 r ( i + Ct- cj) « ^ r ( i + at - Ci + n) 
(2) Y0j = s ^ ' H 22 I I z > 

«-1 r ( l + <Z* - Cy) w-0 f-l r ( l + Ct - Cj + ft) 
j = 1,2,- • • , g + l ; | * | < 1, 

and q + 1 linearly independent solutions about the point z — oo which 
may be written 

^ r ( l - at + ay) - ^ r ( l - c, + ay + w) 1 
(3) F»,- = 2r°'11 2̂  II ' 

<-i r ( l - ct + ay) n==0 «-1 r ( l - a* + ay + ») s" 
y = 1,2,. . . ,q+ l\\z\> 1. 

If, however, we assume that 
ci —• c\ — l\\ c% — C<L — h] ' • ' ; cr cr-i = /r_i 

where each lv is zero or a positive integer and assume at the same 
time that none of these r ct is equal to or differs from any of the at by 
an integer, then the author has shown that the first r of the solutions 
(2) are replaced by the following forms [2] : 

j (j _ i ) l r Qj-v -i 

(4) Foy = £ ^~Cv ~ r: — - *°Gv(w, z) , 

j = 1, 2, • • • , r; | «I < 1, 
where 
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i-v q+i r ( j + ct- ci+ w) 
Gv(w, z) = ( - iy-v-^thl- ) n 

Vin ww/ t=i r ( l + at - a + w) 
lv-l-l v-l 

(5) ' 23 I I r ( ^ - ct- w - n)Y{\ + at - cv + w + n) 

t==v r(i + ct — cv + w + #) 

in which the —l factor and the first product of the summation are 
missing when v = l, and in which we make the special definition l0 = oo ; 
moreover, we make the special convention that Gv(w, z) = 0 if /v_i = 0. 
Similarly, if we assume that ai — a2 = fei;a2 — ö3 = ^2; • • • ;a«-i — a3 = ks-i 
where each kv is zero or a positive integer and assume at the same time 
that none of these s at is equal to or differs from any of the ct by an 
integer, then the first s of the solutions (3) are replaced by the follow
ing forms [2]: 

' ( y - i)!r d>'-* n 
(6) Y„i=Z *- ± '- —— r-Fv(w, z) , 

,=i (j - v)\Ldw'-v J«,-o 
j = 1, 2, • - , s; I z\ > 1, 

where 

P.»-1,, / ^ V""" TT r ^ — at + ax+w) 

r(i - c« + ai + w) 
&v—l—l v—1 

(7) • 23 I I T(at — av — w — n)Y{\ — ct + av + w + n) 
n=0 t=l 

i=v r ( l — at+ av+ w + ti)[_ z J 

in which we make special conventions of the same type as those made 
in connection with (5). 

I t is the purpose of this paper to develop the relations among the 
solutions of (1) when one or both of the two sets of solutions contain 
logarithmic members. The results of this paper generalize those of 
Mehlenbacher [3] and Lindelof [4] who treated the case in which 
2 = 1 . 

2. All YQJ non-logarithmic. In this case we may state the following 
theorem: 

THEOREM 1. If all of the solutions F0/ of equation (1) are non-
logarithmic in character while the first s of the solutions Y^j are logarithm 

l / TTW \1~v «+ 1 

FV(W, z) = ( - i)i-—2««*. i-—) n 
\ s in 7TTO/ (=1 
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mict then the F0/, when extended analytically outside their circle of con-
vergence, may be expressed linearly in terms of the Y*, in the following 
formsy it being understood throughout that 0 < a r g z<2w: 

(s - 1)! t=i r ( l + at - cf) k=i 

(8) + E <e(ak-c,+ l,l) 
£J ƒ , , 1 1 Nr(*,--a*)r(i+ <*-*,) 
2^ i e(ak — ci + i, i) 

ç" r(a, - fl*)r(i + ct - c^ 
k=*s+l \ T(Cjc — ÜJc) 

y j r(q, - ak)T(l + ci - c/) y Ï 

<-i,^* r(c t — a*)r(l + a% — cy) °° ƒ ' 

j = 1 , 2 , . . . , g + l , 

where e{a8 — Cjy 1) an J c(a* —c,-+l, 1) are to be obtained from the defini
tion 

e(w,m) = exp {(l/2)ttr[l — (— l)m]w} 

and where P/S_A;)(0, 1) denotes the (s — k)th derivative with respect to w 
of the function 

Pj{w,m) = (— l J ^ M d + H - » ) * » . ^ ^ ) ) 
\sin 7rzey 

• Tm(cj -ax- w)Tm(w - gy + aL+ 1) 

fr-i r(cf — ai — w)r(w - a« + ai + l) 
<j+x r f a - Ai - w) 

M T(ct — ax — w) 

evaluated for w = 0 and m = l.* 

PROOF. The proof follows the same outline as that employed in the 
non-logarithmic cases [ l ] . Under present assumptions, the function 

t i T(l + c,-c,+ w) 

continues to have simple poles at the points 

(11) w = Ci — ah — n — 1, n = 0, 1, 2, • • • ; k = s + 1, • • • , q + 1, 

but now has poles of order s — v + 1 at the points 

* Throughout this paper, an expression of the form P^(w) indicates the &th 
derivative of P(w) while an expression of the form Pk(w) indicates the &th power of 
P(w). 
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(12) w = Cj — av — n — 1, n = 0 ,1 , 2, • • • , &v_i — l;v = 1, 2, • • • , s. 

Therefore, in the result previously obtained,* we must replace the 
terms for k = 1, 2, • • • , 5 by 

fl+i TVl _i_ r , _ r.) s kv-i-i 

(13) -*-«n^ I ' ' z L*... 
j=i 11,1 -f- 0* — £/j v=\ ws=o 

where i£n,v denotes the residue of the function 
7r(- Z)wg(w) e S+1 r ( l + 0* - £ƒ + W) 

(14) \ = ( - ,)«r(«or(i - W)II 7 ~ - T -—{ 
Sin 7TW <Œ!1 T(l + Ct — Cj + W) 

at the point w = Cj — av — n — 1. 
In order to compute i£w,v, consider 

i f î¥ r(i + at - c, + w) 
(15) RntV = — I ( - *)T(«or(i - ^)II -77- V - T ^ 

27TlJCn t=l T(l + C* — Cy + Z£>) 
where C*̂  surrounds the pole w = Cj — av — n--\ of (14) but no other 
pole of (14). If in (IS), we replace w by — (w — Cj+av+n + l)> we get 

( v\cj—av—n~l r* 

Rn,v = I ( - z)-wT(cj - av - w - n - \) 
(16) 2 W Jc° 

«+1 r(a« — 0V — w — n) 
-T(w — Cj + av + n -{- 1) 11 dw 

«-1 r(c« — av — w — ^) 
where Co surrounds the origin. By several applications of the relation 
(17) r ( i - w) = 

T(w) sin WW 

we may change (16) to the form 

zcj~av-ie^as _ Ch i ) ( _ iy-v-2v
tz{tkt 

•K-n ,v 

(18) 
/

• z~wPj{w, 1) / 7TW \x~v ^ r ( l - at + ax + w) 

Co ws-v+\ \S U 1 TWJ t==l Y (I — ct + 0i + w) 

I J r (0 t — 0V — w — w)r(l — ct + av + w + n) 

^ r ( l - ct + av + w + n) 
W dw, 
t=v r ( l — 0* + av + w + w) 

1 See [l], equation (5). 
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Therefore, 

kr-1"1 /• z~wPj(w, l)Fv(w, z) kv—l~i. /» 

(19) £ Rn,v = - zci-«*-le(as - cif 1) 
s—v+1 

• J W . 

When (19) is evaluated by the theorems of the calculus of residues 
[5], we get 

^zir1 zci-a«-le(a8 — ch 1) Y ds~v "1 
(20) E *» . . = ^ - ^ " 2T-P,-(w, l )^ (w,«) • 

n=o ( ^ - » ) ! Ldw8-* J ^ o 

Therefore 

s kv—l—1 s v—a,v 

Z Z) Rn,v = - ^-^(a, - ch 1 )2 , Nl 

(21) • E C„,hP) \o, 1) z-"Fv(w, z) 

-""*:;,"£w,r'w)u 
(s — 1 ) ! fo-i 

Substituting (21) into (13), we get the final form of the replacements 
to be made in the result previously obtained. When these replace
ments are made, we obtain the desired result (8). 

In a previous paper [ l ] , the author gave the expression for the 
non-logarithmic Y*, in terms of the YOJ. It remains, then, to develop 
the expression for the logarithmic F*,/ in terms of the Fo,-. In this 
connection, we may state the following theorem: 

THEOREM 2. Under the conditions stated in Theorem 1, the logarith
mic Foc y, when extended analytically outside their circle of convergence, 
may be expressed linearly in terms of the F0,- in the following forms, it be
ing understood throughout that 0 < a r g (l/z) <2w: 

F»/ = — E E ] ( W " " \)\Kmj{L)e{ck — am, m) 

(22) k=lm~1 l 

Tm(ck - am)Tm(l - ck + am) Ç" T(ck - ct) \ 
J ^ Yokf y 

T(Ck — ak) <-i,M* r(^/c ~ a0 ) 

J = 1, 2, • • • , s, 

where Kmj{L) is the quotient of the cofactor of the element in the mth row 
and jth column of the determinant 
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(23) A,(L) = 

L,(0) 

X.' (0) 

i i " ( 0 ) 

0 

£«(0) 

21/(0) 

0 

0 

ii(0) 

i " 1}(0) Ci-Lé.1/ 2>(0) C,_ll2Z-'' 3,(0) 

0 

0 

0 

£,(0) 

aw«i A,-(Z,) itself, the Lj(w) being defined by the formula 

/ vw \i £K r ( l - ct+ Ö1+ W) 
(24) L,(w) = «(te;, j) ( - ) Ü =7: ^ _,_ 

\sin 7TW/ <=i r ( l — a* + ai + w) 
awci the cofactor of Zi(0) in Ai(i) foi/zg defined equal to unity. 

PROOF. In order to prove this theorem, we follow the same pro
cedure as that used in the proof of a theorem due to Ford [ó]. If in 
Ford's proof, we replace the integrand which he uses by 

(25) 
( ± z)-"*'' *ft r ( l - ct + a j + w) 

sin' TTW t=*i T(l — at + a,- + w) 
j = 1, 2, • 

where the upper or lower sign is to be taken according as j is even or 
odd, we obtain in place of Ford's final result 

(26) 
n — 0 0 2-71^ 

ƒ• ( ± z)~w^ «+* T(l - ct + a3- + w) 
dw 

cn sin' TW t=i T(l — at + a}- + w) 

, *; 0 < arg (1/s) < 2TT, 
fc=l w=0 

where Cn surrounds the pole w = w of (25) but no other pole of (25), 
and where Sn,k,j denotes the residue of (25) at the point w = Ck — a,j — n 
— 1 which, under the present assumptions, is a simple pole of (25). 
If we replace w by w+n on the left in (26), we obtain 

(27) 

oo „— n /* 

n oo w l J C 

n-l ZTtJco 

( ± z)~wiri *+* r ( l — Ct + dj+w + n) 
J[j_ dw 

c0 sin' TW *=i r ( l — at + a3 + w + n) 
( ± z)~w^ «ft* r ( l - ct + aj+ w - n) 

n 
+ Z 2"'" 

At;—1—1 

sin' TTW t=i r ( l — of + a,- + w — n) 

Z~n r ( ± 2)-u,7Ty 

2iriJ c0 sin?'7TW 

dw 

n=0 

— c* + a„ + w + n) 

t S r ( l — a* + av + w + n) n ( 
<te 
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where Co surrounds the origin. If we now apply (17) a number of 
times, the right side of (27) becomes 

T— —T-. ( ± * ) -
n = l ÏTtl ^ J c0 

} 

* I I F(at ~" ai ~~ w + ^)T(l — C* + ay + W — ^) 

(28) 
çç r(i - ^ + ay + w - ») 7 

«_ƒ+! r ( l — at + dj + w — ») 

ƒ ga,--^ /. z-
wLj(w)Fv(w, z) 

+ z^ r I :—; àw. E — f 
„=1 2iri J c 

c0 wj-v+i 

But since the integrand of the first integral of (28) is analytic for 
w = 0, the first summation vanishes. When the second term of (28) is 
evaluated by the theorems of the calculus of residues [5], we obtain 

ƒ z-av i- Qj-v -l 
*•'£ ——- z~™Lj(w)Fv(w, z) 

,=1 0 - v)\LdW>-* Ju,=0 

0 - 1) ! w=i 

As to the right member of (26), since w = ck — dj — n — l is a simple 
pole of (25), we may compute the residue Sn,k,j without difficulty. 
When this residue and (29) are used in (26), we obtain 

/ J C i—l.m—1-L'i {S*)* oom 

(30) ~-0'-l)!£-Uc*-<*fc./) 
3+1 / 

J^<e(ck — ah^ 
k=l \ 

*+i { t .N T'Xck - ay)r»(l - ck + a,) 

T(ck — ak) 

« r(^ - ct) \ 
• n = 7 — - F o * > , j = i, 2 , . . . , * . 

Since all Ywm and all F0/b which appear in (30) are defined by series 
which converge for \z\ > 1 , and |^| < 1 , respectively, we may replace 
~ by = in (30). Although this gives us 5 equations, only the first j 
of these need be used in solving for a particular Y^. Solving these by 
Cramer's rule, we obtain the desired result (22). 

3. All F*,,- non-logarithmic. By means of proofs similar to those 
given in §2, we may establish the following theorems: 
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THEOREM 3. If all of the solutions Y^ of equation (1) are non-loga
rithmic in character while the first r of the solutions F0y are logarithmic, 
then the logarithmic F0y, when extended analytically outside their circle 
of convergence, may be expressed linearly in terms of the F»,- in the fol
lowing forms, it being understood throughout that 0 < a r g z<2w: 

fl+l 3 ( 

Y0j = — ]C X) \ (m — i)lKm,{N)e(ak — cm, m) 
A;==lw=l V 

(31) Tm(cm - ak)T
m(l - cm + ak) çtj T(at - ak) n ÏF^'4. T(ck — ak) t=*i,t?ik 

j = 1, 2, • 

where Kmj(N) is defined as in Theorem 2 with Lj(w) replaced by 

^ r ( l + at-ci+w) 

r ( i + ct- d + w) 

/ TW Y ' Ç " 

(32) tf,(«0 = « ( - w , j ) ( - ) II 
\ s i n WW/ t=i 

THEOREM 4. Under the conditions stated in Theorem 3, the F*,-, w&0^ 
extended analytically outside their circle of convergence, may be expressed 
linearly in terms of the Foy in the following forms, it being understood 
throughout that O <arg (1/z) <27r: 

. <±-jgL n w-.+.,) t c i t i g r > 1)FM 
(r - 1)! «„i r ( l - ct + a-) k=sl 

& ( , A r(c* - a,-)r(l - a* + ay) 
2 ^ < c(cft - dj - l , l ) 

ç" r(c* - c«)r(i - a, + «/) 
( 3 3 ) t - r + l V r(c/fe — (Ik) 

«+1 r(c* - c«)r(l -at + a,) \ 
. j ^ Yok > y 

«-i.Mfc IXC* - a*)r(i - c* + ai) ) 
j = 1, 2, • • • , q+ 1, 

wftere Ç/r-A;)(0, 1) denotes the (r—k)th derivative with respect to w of the 
following function, evaluated for w = 0 and m = 1 : 

«r - l / WW \ r 

Q,{w,m) = (— l )H-2 M (H-H-m)Z t e (_ W > W ) I ) 
\ s i n 7TW/ 

(34) 
' r m ( d - a,- - w)rw(w - ci + ay + 1) ^ r(ci - ct - w) 

*-i r(ci — at — w)r(w — ci + ^ + 1) *=r+i r(ci — a* — w) 

4. Logarithmic members in both F03 and F*,/. The procedure used 
in the proof of Theorem 2 may be used again in this case. The only 
additional difficulties arise from the fact that the residue terms like 
Sn.fc.j of (26) do not all come from simple poles. But the steps in the 
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proofs of the following theorems are the same as those in the proof of 
Theorem 2. 

THEOREM 5. If the first r of the solutions Y o 3- and the first s of the 
solutions Yooj of equation (1) are logarithmic in character, then the loga
rithmic Yoj, when extended analytically outside their circle of conver
gence, may be expressed linearly in terms of the Y^j in the following 
forms, it being understood throughout that 0 < a r g z<2w: 

_£. (e(a8 — cm, m) * ( S_AO 

roi = £ ( * » - i)\Km]{N)\—- -i_'£c^i.*-iPL '(effort 
m-1 I 0 — 1) I * - l 

q+l , N Tm(cm - ak)T
m(l - cm + ak) 

(35) — 2Lé e\ak — cm, m) 
k=s+i T(Ck — ajc) 

ÇÇ T(at - ak) ) 

i=l,tyik J- \Ct — dk) ) 

THEOREM 6. Under the conditions stated in Theorem 5, the logarithmic 
Yooj, when extended analytically outside their circle of convergence, may 
be expressed linearly in terms of the Y0]- in the following forms, it being 
understood throughout that 0 <arg (1/z) <2ir: 

(0,tn)Yok 
J- (e(cr — am,m) J _ (, 

F., = Z (m - 1)!**,(£){-^ ^ Z a - i , * - i & 
m-l I (f — 1 ) ! *_1 

& , , r w ( c * - am)Tm(l - ck + am) 
(36) — 2 ^ *fc* — Am, W) 

k=r+i T(Ck — ak) 

f-i ,M* r ( c * — « 0 / 7 = 1, 2, • • • , s . 
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