ON A CERTAIN CLASS OF SYMMETRIC HYPERSURFACES
DARRELL R. SHREVE

In the literature of algebraic geometry, relatively little is written
on hypersurfaces H of order # and of »—1 dimensions in S,, invariant
under the symmetric permutation group G on r-+2 homogeneous co-
ordinates whose sum is zero. Surfaces in S; invariant under the sym-
metric G0 have been studied by Emch [1]; the Clebsch diagonal
surface has been discussed by Clebsch [2], Eckardt [3], and Ciani [4,
5, 6]. The Segre cubic variety in Sy has been investigated by Segre
[8]; Ciani [7] has developed properties of loci in Sy invariant under
the Gizo.

It is well known that the equation of such a hypersurface H is ex-
expressible uniquely in terms of the elementary symmetric func-
tions p; (of order ¢ in x4, - - -, %,42), Or in terms of the Z functions
.= *2%. With the condition Z;=0, any H is a member of the
linear system

N a_ b d
(1) D.C2yZ5 -+ - Zpya =0

=1
where N is the number of nonnegative solutions of the Diophantine
equation

(2) 2a4+3b+ -+ + (r+ 2)d = 0.

1t follows immediately that there is a unique hyperquadric Hp, 2, =0
or p,=0, a unique cubic H;, Z3=0 or p3=0, a pencil of quartics Hj,
AZ4+uZ2=0, a pencil of quintics Hs, NZ5+uZ22Z3=0, and so on, in .S,
invariant under G.

Since there are no real points on Z,=0 if # is even, values of » will
be restricted to odd positive integers throughout the remainder of
this paper.

Emch [1] has shown that the equation of any surface of odd order
in S3, invariant under the symmetric Gio on 5 x’s whose sum is zero
necessarily has the form Ap;+Bps;=0, which is equivalent to
NZ;+4uZs=0. The obvious generalization of this statement is that
any H of order # necessarily is a member of the linear system

3) AZ3 4+ BZ5+ - - - + D2,y = 0
if r=2k+1, and in case =2k, of the system
(4) AE3+BE5+"'+CE¢+1=0.
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If r=2k-+1, all H of (3) contain the base Z3=25= - - - =2,,2=0.
This base is of order a=(r+2)-7!/2*%-k! and of dimension %, consist-
ing of the « subspaces into which the Sy [x1+%2=0, xs+x4=0, + - - ,
%,~4%,41=0, x,42=0] is carried by the substitutions of G. Each Sj is
invariant under a subgroup of G of order 2%+!. (E+41)!.

If »=2k, all H of (4) contain the base Z3=25= - - =2Z,,=0,
of order §=(r+1)!/2%-k! and of dimension &, consisting of the 8 sub-
spaces into which the substitutions of G carry the S [x14+x2=0,
x3+x4=0, - - -, X,41+%,42=0]; each Sy is invariant under a subgroup
of G of order 2¥+1. (k+41)!.

The hypersurfaces 2, =0 have as double points only those points
whose coordinates are proportional to (z—1)th roots of unity, since
at a double point the 41 partial derivatives 0Z,/dx; =nx*1—nx's,;,
4=1, 2, - -, r4+1, must vanish (with the dependence of x,.» ex-
pressed by Z;=0). It follows immediately that 2, =0 has Cy,y1, real
double points if =2k, and has no real double points if r=2k1.
Imaginary double points of 2, =0 will occur whenever there is a set
of r+2 (n—1)th roots of unity, not all real, whose sum is zero.

If »=2k-+1, then none of the a subspaces S; passes through a
double point of Z, =0, since at a double point no x;=0.

If » =2k, then in each of the 8 subspaces S; there are (z—1)* double
points of Z,=0, of which exactly 2* are real; through each of the real
double points pass (k+1)! subspaces Si. If r=2k, and 2k+1 is a
prime, then the B8 subspaces S; divide into (r—1)! sets of (r+1)-
tuples, each (r+41)-tuple being transformable into another (r41)-
tuple by a cyclic substitution of G of period r+1. (This is a generaliza-
tion of the 6 quintuples of planes on the Segre cubic variety.)

The hypersurfaces Z,=0 can contain no points of multiplicity
greater than two, since not all the partial derivatives of higher order
vanish at any point.

Eckardt [3] has given an admirable synthetic and analytic discus-
sion of the properties of an Eckardt point of a surface in S;. The
analytic generalization is immediate. Let a generalized Eckardt point
E of a hypersurface F, of order m>2 and of r—1 dimensions in S,
be a simple point of F such that the hyperplane T tangent to Fin E
intersects F in a hypercone with a vertex at E. We may so choose the

polylateral of reference in S, that Eis (1,0, - - -, 0), and T is x,=0.
Then the equation of F necessarily has the form

(5) xzxf”*l + alxgx{""2 + s o + Am—2%2%1 + am = 0

where a; is a form of order 7 in %2, %3, - - * , Xppu.

It follows immediately that the sth polar of E reduces into T
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(x2=0) and a hypersurface of order m—:—1 which does not pass
through E.

Conversely, if the polar of a point P with respect to a hypersurface
F of order m reduces into a hyperplane 7 passing through P and a
hypersurface of order m —2 not passing through P, then if F does not
reduce into 7 and a hypersurface of order m—1, P is a generalized
Eckardt point of F and = is tangent to F at the point P.

On each hypersurface 2,=0 in S, there are C,;2,2 Eckardt points
E;; (xi= —x;5#0; x,=0, s5£4, j), with the hyperplane x;+x;=0 tan-
gent to 2,=0 at E;;. The polar of E;; with respect to 2,=0 is
xp~1—x1=0, which contains the hyperplanes x;+x;=0 and
x;—x;=0. The latter is the axis of the perspectivity (¢j), with center
at E;;, under which Z,=0 and the polar of E;; are invariant. The
(n—1)-fold locus x;=x;=0 of the polar of E;; contains C, 2 Eckardt
points Ey, (s, t5%1, 7).

If »=2F, the hyperplane x;+x;=0 contains C, ; real double points
of Z,=0, and x;—x;=0 contains the remaining C, ;-1 real double
points. Each real double point D of 2,=0 is collinear with (k41)2
couples of points of Z,=0, each couple consisting of an E;; and the
double point corresponding to D under (¢5). In each of the 8 sub-
spaces S; on 2,=0 there are k+1 points E;j, and through each E;;
there pass r!/2%.k! subspaces Sk, while the three collinear points
E;j, Ei, Ej do not lie in a common S; on Z,=0. An S; is the locus
of points common to the 241 hyperplanes tangent to Z, at the k41
points E;; in the Sk.

If »=2k+1, through each E;; on Z,=0 pass (r+1)!/2%-k! sub-
spaces Sk, with 241 points E;; in each .S;.

The Eckardt point of a hypersurface F is in general of multiplicity
r—1 on the Hessian of F; the Eckardt points of Z,=0 are of
multiplicity (zr—1)(z—2) on the Hessian of Z,=0, whose equation
is > 1421 /xp2=0.
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CORRECTION TO “ON GREEN’S FUNCTIONS IN
THE THEORY OF HEAT CONDUCTION
IN SPHERICAL COORDINATES”*

A. N. LOWAN

In the article entitled On Green's functions in the theory of heat con-
duction by H. S. Carslaw and J. C. Jaeger (this Bulletin, vol. 45
(1939), pp. 407-413), a misprint is noted in the expression for G on
page 133 of my article On the operational determination of two dimen-
stonal Green's functions in the theory of heat conduction (this Bulletin,
vol. 44 (1938), pp. 125-133), the correct expression for G being

N
1 hsd ® Hn (arO)
G=u+v=— cos n(d — 6 okt — ——
4 ,,,,z_.:w ( 0 — U.(ac)

-{J,,(ar) Un(aa) — H (ar) [a dizfn(z) + hf,,(z)l_“} da,

where
d
Un(aa) = [a —2P6) + hH,‘.”(z)]
dz =
When this correct expression is employed, formula (20), page 313, of
the present paper becomes

1 0
G(r, 6, &, t; 10, 00, do) = ———— >, (21 + 1)P,(cos v)
8w (rro) /2 1o
e
® H, 7
(A) . f ae—ka’t ———tiz—(ii)—{fnﬂ/g(ar) Unpyo(aa) — Hi?]/z(ar)
— Uspiyz(aa)

[ o) + G = 1/ | e

* This Bulletin, vol. 45 (1939), pp. 310-315.




